Suppr超能文献

翻阅主要农作物的基因组:获取独特信息的策略。

Leafing through the genomes of our major crop plants: strategies for capturing unique information.

作者信息

Paterson Andrew H

机构信息

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.

出版信息

Nat Rev Genet. 2006 Mar;7(3):174-84. doi: 10.1038/nrg1806.

Abstract

Crop plants not only have economic significance, but also comprise important botanical models for evolution and development. This is reflected by the recent increase in the percentage of publicly available sequence data that are derived from angiosperms. Further genome sequencing of the major crop plants will offer new learning opportunities, but their large, repetitive, and often polyploid genomes present challenges. Reduced-representation approaches - such as EST sequencing, methyl filtration and Cot-based cloning and sequencing - provide increased efficiency in extracting key information from crop genomes without full-genome sequencing. Combining these methods with phylogenetically stratified sampling to allow comparative genomic approaches has the potential to further accelerate progress in angiosperm genomics.

摘要

农作物不仅具有经济意义,而且是进化与发育研究的重要植物学模型。这一点从近期来自被子植物的公开序列数据所占百分比的增加中得到体现。主要农作物的进一步基因组测序将带来新的研究机遇,但其庞大、重复且往往为多倍体的基因组带来了挑战。代表性减少的方法——如EST测序、甲基过滤以及基于Cot值的克隆与测序——在不进行全基因组测序的情况下,提高了从作物基因组中提取关键信息的效率。将这些方法与系统发育分层抽样相结合以实现比较基因组学方法,有可能进一步加速被子植物基因组学的研究进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验