Small-Howard Andrea, Morozova Nadya, Stoytcheva Zoia, Forry Erin P, Mansell John B, Harney John W, Carlson Bradley A, Xu Xue-Ming, Hatfield Dolph L, Berry Marla J
Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Mol Cell Biol. 2006 Mar;26(6):2337-46. doi: 10.1128/MCB.26.6.2337-2346.2006.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.
在真核生物中,硒代半胱氨酸通过RNA - 蛋白质复合物的相互作用在UGA密码子处共翻译掺入,其中一个复合物由硒代半胱氨酰(Sec)-tRNA([Ser]Sec)及其特异性延伸因子EFsec组成,另一个由硒代半胱氨酸插入序列(SECIS)元件和SECIS结合蛋白SBP2组成。该途径中涉及的其他因子包括两种硒代磷酸合成酶SPS1和SPS2、核糖体蛋白L30,以及两个被鉴定为结合tRNA([Ser]Sec)的因子,即可溶性肝抗原/肝蛋白(SLA/LP)和SECp43。我们报告称,SLA/LP和SPS1在体外和体内相互作用,并且SECp43共转染会增强这种相互作用,并将所有三种蛋白质重新分布到主要的核定位中。我们进一步表明,SECp43在体外与硒代半胱氨酰 - tRNA([Ser]Sec)-EFsec复合物相互作用,并且SECp43共表达在体内促进EFsec和SBP2之间的相互作用。此外,SECp43增加了硒代半胱氨酸的掺入和硒蛋白mRNA水平,后者可能是由于规避了无义介导的衰变。因此,SECp43成为协调硒蛋白生物合成中其他相关因子的相互作用和定位的关键参与者。最后,我们对SECp43与先前描述的硒蛋白共翻译因子之间多种协调的蛋白质 - 核酸相互作用的研究,得出了一个依赖于细胞质和细胞核超分子复合物的硒代半胱氨酸生物合成和掺入模型。