Kashyap Saarang, Xia Xian, Wang Hui, Shimogawa Michelle, Agnew Angela, Hill Kent, Zhou Z Hong
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
bioRxiv. 2025 May 30:2025.05.29.656921. doi: 10.1101/2025.05.29.656921.
Axonemes are cylindrical bundles of microtubule filaments that typically follow a 9+n pattern (where ranges from 0 to 4). However, variations exist across species and cell types, including architectures with fewer (e.g., 3+0, 6+0) or more than nine doublet microtubules (e.g., 9+9+0, 9+9+3), reflecting diverse structural adaptations of cilia and flagella in eukaryotes. , the causative agent of African trypanosomiasis, relies on its single 9+2 flagellum to navigate through environments within the mammalian host and insect vector. Central to the flagellum's function is a canonical central apparatus (CA), composed of two-C1 and C2- singlet microtubules, which regulates flagellar beating and ensures efficient movement. Despite its crucial mechanoregulatory role in flagellar beating, the molecular structure and interactions governing CA assembly and function remain poorly understood. In this study, we employed cryogenic electron microscopy (cryoEM) to uncover structural details of the CA. We identified conserved and stably C1/C2-associated protein densities, including the armadillo repeat protein PF16, which serves as a structural scaffold critical for CA assembly and axonemal asymmetry. Our analysis also revealed pronounced molecular flexibility of the CA and uncovered -specific densities, suggesting lineage-specific adaptations for parasite motility. These findings provide critical insights into the structural foundations of motility. They also highlight potential therapeutic targets to disrupt the parasite's ability to cause disease, offering new avenues for the treatment of African trypanosomiasis. Comparison of CAs in this canonical 9+2 axoneme and non-canonical 9+n axonemes offers general insights into the assembly and diverse functions of CAs across a wide range of species.
轴丝是微管丝的圆柱形束,通常遵循9 + n模式(其中n的范围为0至4)。然而,不同物种和细胞类型存在差异,包括微管二联体数量较少(例如3 + 0、6 + 0)或多于九个(例如9 + 9 + 0、9 + 9 + 3)的结构,这反映了真核生物中纤毛和鞭毛的多种结构适应性。布氏锥虫是非洲锥虫病的病原体,它依靠其单一的9 + 2鞭毛在哺乳动物宿主和昆虫媒介的环境中导航。鞭毛功能的核心是一个典型的中央装置(CA),由两根单微管C1和C2组成,它调节鞭毛的摆动并确保高效运动。尽管其在鞭毛摆动中具有关键的机械调节作用,但关于CA组装和功能的分子结构及相互作用仍知之甚少。在本研究中,我们采用低温电子显微镜(cryoEM)来揭示布氏锥虫CA的结构细节。我们确定了保守且稳定与C1 / C2相关的蛋白质密度,包括犰狳重复蛋白PF16,它是CA组装和轴丝不对称性的关键结构支架。我们的分析还揭示了CA明显的分子灵活性,并发现了布氏锥虫特异性密度,表明寄生虫运动的谱系特异性适应性。这些发现为布氏锥虫运动的结构基础提供了关键见解。它们还突出了破坏寄生虫致病能力的潜在治疗靶点,为非洲锥虫病的治疗提供了新途径。比较这种典型的9 + 2轴丝和非典型9 + n轴丝中的CA,可为广泛物种中CA的组装和多样功能提供一般性见解。