Zhu C Z, Zang Y F, Liang M, Tian L X, He Y, Li X B, Sui M Q, Wang Y F, Jiang T Z
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, P R China.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):468-75. doi: 10.1007/11566489_58.
In this work, a discriminative model of attention deficit hyperactivity disorder (ADHD) is presented on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model consists of two parts, a classifier and an intuitive representation of discriminative pattern of brain function between patients and normal controls. Regional homogeneity (ReHo), a measure of brain function at resting-state, is used here as a feature of classification. Fisher discriminative analysis (FDA) is performed on the features of training samples and a linear classifier is generated. Our initial experimental results show a successful classification rate of 85%, using leave-one-out cross validation. The classifier is also compared with linear support vector machine (SVM) and Batch Perceptron. Our classifier outperforms the alternatives significantly. Fisher brain, the optimal projective-direction vector in FDA, is used to represent the discriminative pattern. Some abnormal brain regions identified by Fisher brain, like prefrontal cortex and anterior cingulate cortex, are well consistent with that reported in neuroimaging studies on ADHD. Moreover, some less reported but highly discriminative regions are also identified. We conclude that the discriminative model has potential ability to improve current diagnosis and treatment evaluation of ADHD.
在这项工作中,基于多变量模式分类和功能磁共振成像(fMRI)提出了一种注意力缺陷多动障碍(ADHD)的判别模型。该模型由两部分组成,一个分类器和患者与正常对照之间脑功能判别模式的直观表示。局部一致性(ReHo),一种静息状态下脑功能的测量指标,在此用作分类特征。对训练样本的特征进行Fisher判别分析(FDA)并生成线性分类器。我们的初步实验结果显示,采用留一法交叉验证时,成功分类率为85%。该分类器还与线性支持向量机(SVM)和批量感知器进行了比较。我们的分类器明显优于其他方法。FDA中的最优投影方向向量Fisher脑,用于表示判别模式。Fisher脑识别出的一些异常脑区,如前额叶皮质和前扣带回皮质,与ADHD神经影像学研究报告的结果高度一致。此外,还识别出了一些较少报道但具有高度判别性的区域。我们得出结论,该判别模型具有改善当前ADHD诊断和治疗评估的潜在能力。