Suppr超能文献

碳水化合物结合模块:生化特性与新应用

Carbohydrate binding modules: biochemical properties and novel applications.

作者信息

Shoseyov Oded, Shani Ziv, Levy Ilan

机构信息

The Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.

出版信息

Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95. doi: 10.1128/MMBR.00028-05.

Abstract

Polysaccharide-degrading microorganisms express a repertoire of hydrolytic enzymes that act in synergy on plant cell wall and other natural polysaccharides to elicit the degradation of often-recalcitrant substrates. These enzymes, particularly those that hydrolyze cellulose and hemicellulose, have a complex molecular architecture comprising discrete modules which are normally joined by relatively unstructured linker sequences. This structure is typically comprised of a catalytic module and one or more carbohydrate binding modules (CBMs) that bind to the polysaccharide. CBMs, by bringing the biocatalyst into intimate and prolonged association with its substrate, allow and promote catalysis. Based on their properties, CBMs are grouped into 43 families that display substantial variation in substrate specificity, along with other properties that make them a gold mine for biotechnologists who seek natural molecular "Velcro" for diverse and unusual applications. In this article, we review recent progress in the field of CBMs and provide an up-to-date summary of the latest developments in CBM applications.

摘要

多糖降解微生物表达一系列水解酶,这些酶协同作用于植物细胞壁和其他天然多糖,以引发通常难降解底物的降解。这些酶,特别是那些水解纤维素和半纤维素的酶,具有复杂的分子结构,由离散的模块组成,这些模块通常由相对无结构的连接序列连接。这种结构通常由一个催化模块和一个或多个与多糖结合的碳水化合物结合模块(CBM)组成。CBM通过使生物催化剂与其底物紧密且长时间结合,从而允许并促进催化作用。根据其特性,CBM被分为43个家族,这些家族在底物特异性以及其他特性方面表现出很大差异,这使得它们成为寻求用于各种特殊应用的天然分子“魔术贴”的生物技术人员的宝库。在本文中,我们回顾了CBM领域的最新进展,并提供了CBM应用最新发展的最新总结。

相似文献

1
Carbohydrate binding modules: biochemical properties and novel applications.
Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95. doi: 10.1128/MMBR.00028-05.
2
Carbohydrate-binding domains: multiplicity of biological roles.
Appl Microbiol Biotechnol. 2010 Feb;85(5):1241-9. doi: 10.1007/s00253-009-2331-y. Epub 2009 Nov 12.
5
Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules.
Curr Opin Struct Biol. 2013 Oct;23(5):669-77. doi: 10.1016/j.sbi.2013.05.005. Epub 2013 Jun 13.
6
How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation.
Curr Opin Plant Biol. 2008 Jun;11(3):338-48. doi: 10.1016/j.pbi.2008.03.004. Epub 2008 Apr 20.
7
Carbohydrate-binding modules: fine-tuning polysaccharide recognition.
Biochem J. 2004 Sep 15;382(Pt 3):769-81. doi: 10.1042/BJ20040892.
8
Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4765-70. doi: 10.1073/pnas.0508887103. Epub 2006 Mar 14.
9
Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15293-8. doi: 10.1073/pnas.1005732107. Epub 2010 Aug 9.
10
Stability and Ligand Promiscuity of Type A Carbohydrate-binding Modules Are Illustrated by the Structure of CBM64C.
J Biol Chem. 2017 Mar 24;292(12):4847-4860. doi: 10.1074/jbc.M116.767541. Epub 2017 Feb 8.

引用本文的文献

1
Enhancing Cold Adaptation of Bidomain Amylases by High-Throughput Computational Engineering.
Angew Chem Int Ed Engl. 2025 Jul;64(29):e202505991. doi: 10.1002/anie.202505991. Epub 2025 May 9.
3
Genome mining the black-yeast Aureobasidium pullulans NRRL 62031 for biotechnological traits.
BMC Genomics. 2025 Mar 13;26(1):244. doi: 10.1186/s12864-025-11395-2.
4
Comprehensive cDNA cloning and putative feature analysis of endogenous cellulases possessed by the Pacific oyster, Crassostrea gigas.
PLoS One. 2025 Feb 7;20(2):e0313246. doi: 10.1371/journal.pone.0313246. eCollection 2025.
6
Aromatic residues in N-terminal domain of archaeal trehalase affect the folding and activity of catalytic domain.
Appl Microbiol Biotechnol. 2024 Aug 15;108(1):441. doi: 10.1007/s00253-024-13205-3.
7
Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials.
Bioresour Bioprocess. 2024 Jul 25;11(1):74. doi: 10.1186/s40643-024-00790-4.
9
Identification and structural analysis of a thermophilic β-1,3-glucanase from compost.
Bioresour Bioprocess. 2021 Oct 17;8(1):102. doi: 10.1186/s40643-021-00449-4.
10
Identification of a novel xanthan-binding module of a multi-modular sp. xanthanase.
Front Microbiol. 2024 Mar 26;15:1386552. doi: 10.3389/fmicb.2024.1386552. eCollection 2024.

本文引用的文献

1
An autoclavable glucose biosensor for microbial fermentation monitoring and control.
Biotechnol Bioeng. 1995 Jun 20;46(6):514-24. doi: 10.1002/bit.260460604.
2
Adhesion of mammalian cells to a recombinant attachment factor, CBD/RGD, analyzed by image analysis.
Biotechnol Bioeng. 1995 May 5;46(3):185-93. doi: 10.1002/bit.260460302.
3
A microfibril-generating factor from the cellulase of Trichoderma reesei.
Biotechnol Bioeng. 1988 Mar;31(4):321-7. doi: 10.1002/bit.260310407.
6
Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium.
Appl Environ Microbiol. 2005 Aug;71(8):4548-55. doi: 10.1128/AEM.71.8.4548-4555.2005.
7
The first crystal structure of a family 31 carbohydrate-binding module with affinity to beta-1,3-xylan.
FEBS Lett. 2005 Aug 15;579(20):4324-8. doi: 10.1016/j.febslet.2005.06.062.
10
Microbial starch-binding domain.
Curr Opin Microbiol. 2005 Jun;8(3):260-7. doi: 10.1016/j.mib.2005.04.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验