Li Tao, Tang XinYue, Zhu YiBo, Zhao NingLin, Song YingJie, He Lihui, Mou XingYu, Ge Chunlei, Chen Zhenpu, Zhang Hai, Yao Xiaoxuan, Hu Xiaoyuan, Cheng Jiaxing, Yao Hong, Bao Rui
Cancer Biotherapy Center & Cancer Research Institute, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.
Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Mol Biomed. 2025 Apr 23;6(1):24. doi: 10.1186/s43556-025-00265-8.
Sialidases in Akkermansia muciniphila are pivotal for mucin degradation, enabling energy acquisition, modulating gut microbiota balance, and influencing host health. However, their structural and functional mechanisms remain poorly characterized. This study resolved the magnesium-bound crystal structure of Amuc_1547, revealing a six-bladed β-propeller fold linked to a carbohydrate-binding module (CBM)-like β-sandwich domain. Structural characterization identified a conserved S-x-D-x-G-x-x-W motif, a unique metal-binding pocket coordinated by residues Glu289, Glu299, and Asp300, and a putative carbohydrate substrate-binding pocket within the CBM-like domain. Enzymatic assays confirmed the functional relevance of these structural elements and demonstrated that both metal ions and glycans significantly enhance enzymatic activity. Molecular docking, dynamics simulations, and enzyme kinetics analysis identified critical residue substitutions involved in sialic acid substrate binding and catalysis: Gln367 replaces an arginine in the classical Arg-triplet, while Gln350 and His349 replace the nucleophilic tyrosine. These substitutions collectively mediate substrate binding, nucleophilic attack, and transition state stabilization, distinguishing the catalytic mechanism of Amuc_1547 from other six-bladed β-propeller sialidases. Additionally, comparative analysis of the four A. muciniphila sialidases highlights sequence divergence and domain architecture variations, suggesting niche-specific roles in gut microenvironments. Our work not only deciphers the structural basis of metal-dependent substrate recognition in Amuc_1547 but also advances our understanding of the adaptation of A. muciniphila to gut niches, offering a blueprint for leveraging sialidase-driven mucin metabolism in microbiota-targeted therapies.
嗜黏蛋白阿克曼氏菌中的唾液酸酶对于黏蛋白降解至关重要,它能够实现能量获取、调节肠道微生物群平衡并影响宿主健康。然而,它们的结构和功能机制仍未得到充分表征。本研究解析了与镁结合的Amuc_1547晶体结构,揭示了一个与碳水化合物结合模块(CBM)样β-三明治结构域相连的六叶β-螺旋桨折叠。结构表征确定了一个保守的S-x-D-x-G-x-x-W基序、一个由Glu289、Glu299和Asp300残基配位的独特金属结合口袋,以及CBM样结构域内一个假定的碳水化合物底物结合口袋。酶活性测定证实了这些结构元件的功能相关性,并表明金属离子和聚糖均能显著增强酶活性。分子对接、动力学模拟和酶动力学分析确定了参与唾液酸底物结合和催化的关键残基取代:Gln367取代了经典Arg三联体中的一个精氨酸,而Gln350和His349取代了亲核酪氨酸。这些取代共同介导底物结合、亲核攻击和过渡态稳定,使Amuc_1547的催化机制有别于其他六叶β-螺旋桨唾液酸酶。此外,对嗜黏蛋白阿克曼氏菌的四种唾液酸酶的比较分析突出了序列差异和结构域结构变化,表明它们在肠道微环境中具有特定的生态位作用。我们的工作不仅破译了Amuc_1547中金属依赖性底物识别的结构基础,还推进了我们对嗜黏蛋白阿克曼氏菌适应肠道生态位的理解,为在微生物群靶向治疗中利用唾液酸酶驱动的黏蛋白代谢提供了蓝图。