Ueno Takafumi, Yokoi Norihiko, Unno Masaki, Matsui Toshitaka, Tokita Yuichi, Yamada Masako, Ikeda-Saito Masao, Nakajima Hiroshi, Watanabe Yoshihito
Research Center for Materials Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9416-21. doi: 10.1073/pnas.0510968103. Epub 2006 Jun 12.
Protein-to-protein electron transfer (ET) is a critical process in biological chemistry for which fundamental understanding is expected to provide a wealth of applications in biotechnology. Investigations of protein-protein ET systems in reductive activation of artificial cofactors introduced into proteins remains particularly challenging because of the complexity of interactions between the cofactor and the system contributing to ET. In this work, we construct an artificial protein-protein ET system, using heme oxygenase (HO), which is known to catalyze the conversion of heme to biliverdin. HO uses electrons provided from NADPH/cytochrome P450 reductase (CPR) through protein-protein complex formation during the enzymatic reaction. We report that a Fe(III)(Schiff-base), in the place of the active-site heme prosthetic group of HO, can be reduced by NADPH/CPR. The crystal structure of the Fe(10-CH(2)CH(2)COOH-Schiff-base).HO composite indicates the presence of a hydrogen bond between the propionic acid carboxyl group and Arg-177 of HO. Furthermore, the ET rate from NADPH/CPR to the composite is 3.5-fold faster than that of Fe(Schiff-base).HO, although the redox potential of Fe(10-CH(2)CH(2)COOH-Schiff-base).HO (-79 mV vs. NHE) is lower than that of Fe(Schiff-base).HO (+15 mV vs. NHE), where NHE is normal hydrogen electrode. This work describes a synthetic metal complex activated by means of a protein-protein ET system, which has not previously been reported. Moreover, the result suggests the importance of the hydrogen bond for the ET reaction of HO. Our Fe(Schiff-base).HO composite model system may provide insights with regard to design of ET biosystems for sensors, catalysts, and electronics devices.
蛋白质-蛋白质电子转移(ET)是生物化学中的一个关键过程,对其基本理解有望在生物技术中带来大量应用。由于引入蛋白质中的人工辅因子与促进电子转移的系统之间相互作用复杂,对蛋白质-蛋白质电子转移系统在人工辅因子还原激活方面的研究仍然极具挑战性。在这项工作中,我们构建了一个人工蛋白质-蛋白质电子转移系统,使用血红素加氧酶(HO),已知其催化血红素转化为胆绿素。HO在酶促反应过程中通过蛋白质-蛋白质复合物形成利用来自NADPH/细胞色素P450还原酶(CPR)提供的电子。我们报告,位于HO活性位点血红素辅基位置的Fe(III)(席夫碱)可被NADPH/CPR还原。Fe(10-CH(2)CH(2)COOH-席夫碱).HO复合物的晶体结构表明丙酸羧基与HO的Arg-177之间存在氢键。此外,从NADPH/CPR到该复合物的电子转移速率比Fe(席夫碱).HO快3.5倍,尽管Fe(10-CH(2)CH(2)COOH-席夫碱).HO的氧化还原电位(相对于标准氢电极,NHE为-79 mV)低于Fe(席夫碱).HO(相对于NHE为+15 mV)。这项工作描述了一种通过蛋白质-蛋白质电子转移系统激活的合成金属配合物,此前尚未见报道。此外,结果表明氢键对HO的电子转移反应很重要。我们的Fe(席夫碱).HO复合模型系统可能为传感器、催化剂和电子设备的电子转移生物系统设计提供见解。