Eswaramoorthy Subramaniam, Bonanno Jeffrey B, Burley Stephen K, Swaminathan Subramanyam
Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9832-7. doi: 10.1073/pnas.0602398103. Epub 2006 Jun 15.
Elimination of nonnutritional and insoluble compounds is a critical task for any living organism. Flavin-containing monooxygenases (FMOs) attach an oxygen atom to the insoluble nucleophilic compounds to increase solubility and thereby increase excretion. Here we analyze the functional mechanism of FMO from Schizosaccharomyces pombe using the crystal structures of the wild type and protein-cofactor and protein-substrate complexes. The structure of the wild-type FMO revealed that the prosthetic group FAD is an integral part of the protein. FMO needs NADPH as a cofactor in addition to the prosthetic group for its catalytic activity. Structures of the protein-cofactor and protein-substrate complexes provide insights into mechanism of action. We propose that FMOs exist in the cell as a complex with a reduced form of the prosthetic group and NADPH cofactor, readying them to act on substrates. The 4alpha-hydroperoxyflavin form of the prosthetic group represents a transient intermediate of the monooxygenation process. The oxygenated and reduced forms of the prosthetic group help stabilize interactions with cofactor and substrate alternately to permit continuous enzyme turnover.
消除非营养性和不溶性化合物是任何生物的一项关键任务。含黄素单加氧酶(FMOs)将一个氧原子连接到不溶性亲核化合物上以增加其溶解度,从而增加排泄。在这里,我们利用野生型以及蛋白质 - 辅因子和蛋白质 - 底物复合物的晶体结构分析了粟酒裂殖酵母中FMO的功能机制。野生型FMO的结构表明,辅基FAD是蛋白质的一个组成部分。FMO除了辅基外还需要NADPH作为辅因子来发挥其催化活性。蛋白质 - 辅因子和蛋白质 - 底物复合物的结构为作用机制提供了见解。我们提出,FMOs在细胞中以与辅基的还原形式和NADPH辅因子形成的复合物形式存在,随时准备作用于底物。辅基的4α - 氢过氧黄素形式代表单加氧过程的一个瞬时中间体。辅基的氧化和还原形式有助于交替稳定与辅因子和底物的相互作用,以允许酶的持续周转。