Suppr超能文献

含有机溶剂双相体系中的生物脱硫

Biodesulfurization in biphasic systems containing organic solvents.

作者信息

Tao Fei, Yu Bo, Xu Ping, Ma Cui Qing

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.

出版信息

Appl Environ Microbiol. 2006 Jul;72(7):4604-9. doi: 10.1128/AEM.00081-06.

Abstract

Biphasic systems can overcome the problem of low productivity in conventional media and have been exploited for biocatalysis. Solvent-tolerant microorganisms are useful in biotransformation with whole cells in biphasic reactions. A solvent-tolerant desulfurizing bacterium, Pseudomonas putida A4, was constructed by introducing the biodesulfurizing gene cluster dszABCD, which was from Rhodococcus erythropolis XP, into the solvent-tolerant strain P. putida Idaho. Biphasic reactions were performed to investigate the desulfurization of various sulfur-containing heterocyclic compounds in the presence of various organic solvents. P. putida A4 had the same substrate range as R. erythropolis XP and could degrade dibenzothiophene at a specific rate of 1.29 mM g (dry weight) of cells(-1) h(-1) for the first 2 h in the presence of 10% (vol/vol) p-xylene. P. putida A4 was also able to degrade dibenzothiophene in the presence of many other organic solvents at a concentration of 10% (vol/vol). This study is a significant step in the exploration of the biotechnological potential of novel biocatalysts for developing an efficient biodesulfurization process in biphasic reaction mixtures containing toxic organic solvents.

摘要

双相系统可以克服传统介质中生产率低的问题,并已被用于生物催化。耐溶剂微生物在双相反应中用于全细胞生物转化。通过将来自红平红球菌XP的生物脱硫基因簇dszABCD引入耐溶剂菌株恶臭假单胞菌爱达荷中,构建了一种耐溶剂脱硫细菌恶臭假单胞菌A4。进行双相反应以研究在各种有机溶剂存在下各种含硫杂环化合物的脱硫情况。恶臭假单胞菌A4具有与红平红球菌XP相同的底物范围,并且在存在10%(体积/体积)对二甲苯的情况下,在前2小时内能够以1.29 mM每克(干重)细胞每小时的比速率降解二苯并噻吩。恶臭假单胞菌A4在存在许多其他浓度为10%(体积/体积)的有机溶剂的情况下也能够降解二苯并噻吩。这项研究是探索新型生物催化剂在含有毒有机溶剂的双相反应混合物中开发高效生物脱硫工艺的生物技术潜力的重要一步。

相似文献

1
Biodesulfurization in biphasic systems containing organic solvents.
Appl Environ Microbiol. 2006 Jul;72(7):4604-9. doi: 10.1128/AEM.00081-06.
2
Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media.
Chemosphere. 2008 Oct;73(5):663-9. doi: 10.1016/j.chemosphere.2008.07.031.
4
Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media.
Biodegradation. 2008 Jul;19(4):599-611. doi: 10.1007/s10532-007-9165-z. Epub 2007 Nov 24.
5
Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain.
Bioresour Technol. 2010 Feb;101(3):1102-5. doi: 10.1016/j.biortech.2009.08.058. Epub 2009 Oct 9.
6
Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium.
Appl Microbiol Biotechnol. 2004 Sep;65(4):440-5. doi: 10.1007/s00253-004-1587-5. Epub 2004 May 7.
7
Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
FEBS J. 2008 Oct;275(20):5173-90. doi: 10.1111/j.1742-4658.2008.06648.x. Epub 2008 Sep 18.
10
Industrial potential of organic solvent tolerant bacteria.
Biotechnol Prog. 2004 May-Jun;20(3):655-60. doi: 10.1021/bp0200595.

引用本文的文献

3
Characterization and genomic analysis of 135, a promising dibenzothiophene-degrading strain.
Biotechnol Rep (Amst). 2021 Jan 16;29:e00591. doi: 10.1016/j.btre.2021.e00591. eCollection 2021 Mar.
4
Diesel-born organosulfur compounds stimulate community re-structuring in a diesel-biodesulfurizing consortium.
Biotechnol Rep (Amst). 2020 Nov 23;28:e00572. doi: 10.1016/j.btre.2020.e00572. eCollection 2020 Dec.
6
Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.
Jundishapur J Microbiol. 2014 Mar;7(3):e9123. doi: 10.5812/jjm.9123. Epub 2014 Mar 1.
7
New constitutive vectors: useful genetic engineering tools for biocatalysis.
Appl Environ Microbiol. 2013 Apr;79(8):2836-40. doi: 10.1128/AEM.03746-12. Epub 2013 Feb 15.
10
Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium.
J Bacteriol. 2011 Dec;193(24):7011-2. doi: 10.1128/JB.06200-11.

本文引用的文献

2
Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain.
Appl Environ Microbiol. 2006 Jan;72(1):54-8. doi: 10.1128/AEM.72.1.54-58.2006.
3
Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles.
Appl Environ Microbiol. 2005 Aug;71(8):4497-502. doi: 10.1128/AEM.71.8.4497-4502.2005.
4
Whole organism biocatalysis.
Curr Opin Chem Biol. 2005 Apr;9(2):174-80. doi: 10.1016/j.cbpa.2005.02.001.
5
Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system.
Appl Environ Microbiol. 2005 Jan;71(1):276-81. doi: 10.1128/AEM.71.1.276-281.2005.
6
Biotechnology of desulfurization of diesel: prospects and challenges.
Appl Microbiol Biotechnol. 2005 Jan;66(4):356-66. doi: 10.1007/s00253-004-1755-7. Epub 2004 Nov 5.
8
Industrial potential of organic solvent tolerant bacteria.
Biotechnol Prog. 2004 May-Jun;20(3):655-60. doi: 10.1021/bp0200595.
9
Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium.
Appl Microbiol Biotechnol. 2004 Sep;65(4):440-5. doi: 10.1007/s00253-004-1587-5. Epub 2004 May 7.
10
Recent advances in petroleum microbiology.
Microbiol Mol Biol Rev. 2003 Dec;67(4):503-49. doi: 10.1128/MMBR.67.4.503-549.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验