Suppr超能文献

从SF-12量表映射EQ-5D指数:美国全国代表性样本中的一般人群偏好

Mapping the EQ-5D index from the SF-12: US general population preferences in a nationally representative sample.

作者信息

Sullivan Patrick W, Ghushchyan Vahram

机构信息

University of Colorado School of Pharmacy, Pharmaceutical Outcomes Research Program, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA.

出版信息

Med Decis Making. 2006 Jul-Aug;26(4):401-9. doi: 10.1177/0272989X06290496.

Abstract

BACKGROUND

Previous mapping algorithms estimating EQ-5D index scores from the SF-12 were based on preferences from a UK community sample. However, preferences based on the general US population are most appropriate for costeffectiveness analyses done from the societal perspective in the United States.

OBJECTIVE

To provide a mapping algorithm for estimating EQ-5D index scores from the SF-12 based on a nationally representative sample and using preferences based on the general US population:

METHODS

The Medical Expenditure Panel Survey (MEPS) 2002 and 2000 data were used as independent derivation and validation sets to estimate the relationship between SF-12 scores and EQ-5D index scores, controlling for sociodemographic characteristics and comorbidity burden. Prediction equations for end-users who only have access to SF-12 scores were derived and compared. The empirical performance of censored least absolute deviations (CLAD), Tobit, and ordinary least squares (OLS) analytic methods were compared by calculating the mean prediction error in the validation set.

RESULTS

The fully specified CLAD model resulted in the lowest mean prediction error, followed by OLS and Tobit. The CLAD prediction equation based only on SF-12 scores performed better than the fully specified OLS and Tobit models.

CONCLUSION

The current research provides an algorithm for mapping EQ-5D index scores from the SF-12. This algorithm may provide analysts with an avenue to obtain appropriate preference-based health-related quality-of-life scores for use in cost-effectiveness analyses when only SF-12 data are available.

摘要

背景

以往从SF-12量表估算EQ-5D指数得分的映射算法是基于英国社区样本的偏好得出的。然而,基于美国普通人群的偏好对于从美国社会视角进行的成本效益分析最为合适。

目的

基于具有全国代表性的样本,并采用基于美国普通人群的偏好,提供一种从SF-12量表估算EQ-5D指数得分的映射算法。

方法

使用2002年和2000年医疗支出面板调查(MEPS)数据作为独立的推导和验证集,以估算SF-12量表得分与EQ-5D指数得分之间的关系,同时控制社会人口学特征和合并症负担。推导并比较了仅能获取SF-12量表得分的终端用户的预测方程。通过计算验证集中的平均预测误差,比较了删失最小绝对偏差(CLAD)、托比特(Tobit)和普通最小二乘法(OLS)分析方法的实证性能。

结果

完整设定的CLAD模型产生的平均预测误差最低,其次是OLS和Tobit。仅基于SF-12量表得分的CLAD预测方程比完整设定的OLS和Tobit模型表现更好。

结论

当前研究提供了一种从SF-12量表映射EQ-5D指数得分的算法。当仅有SF-12数据可用时,该算法可为分析人员提供一条途径,以获得适用于成本效益分析的基于偏好的健康相关生活质量得分。

相似文献

1
2
Preference-Based EQ-5D index scores for chronic conditions in the United States.
Med Decis Making. 2006 Jul-Aug;26(4):410-20. doi: 10.1177/0272989X06290495.
5
Predicting the EQ-5D-3L Preference Index from the SF-12 Health Survey in a National US Sample: A Finite Mixture Approach.
Med Decis Making. 2015 Oct;35(7):888-901. doi: 10.1177/0272989X15577362. Epub 2015 Apr 3.
6
Catalogue of EQ-5D scores for the United Kingdom.
Med Decis Making. 2011 Nov-Dec;31(6):800-4. doi: 10.1177/0272989X11401031. Epub 2011 Mar 21.
7
Deriving a mapping algorithm for converting SF-36 scores to EQ-5D utility score in a Korean population.
Health Qual Life Outcomes. 2014 Sep 24;12:145. doi: 10.1186/s12955-014-0145-9.
8
9
Predicting the EuroQol Group's EQ-5D index from CDC's "Healthy Days" in a US sample.
Med Decis Making. 2011 Jan-Feb;31(1):174-85. doi: 10.1177/0272989X10364845. Epub 2010 Apr 7.

引用本文的文献

5
Mapping the Peds QL 4.0 onto CHU-9D: a cross-sectional study in functional dyspepsia population from China.
Front Public Health. 2023 May 31;11:1166760. doi: 10.3389/fpubh.2023.1166760. eCollection 2023.
6
Patient-Reported Outcomes During and After Treatment for Locally Advanced Rectal Cancer in the PROSPECT Trial (Alliance N1048).
J Clin Oncol. 2023 Jul 20;41(21):3724-3734. doi: 10.1200/JCO.23.00903. Epub 2023 Jun 4.
7
Mapping health assessment questionnaire disability index onto EQ-5D-5L in China.
Front Public Health. 2023 Apr 18;11:1123552. doi: 10.3389/fpubh.2023.1123552. eCollection 2023.
8
Estimates of Quality-Adjusted Life-Year Loss for Injuries in the United States.
Med Decis Making. 2023 Apr;43(3):288-298. doi: 10.1177/0272989X221141454. Epub 2022 Dec 8.
9
Mapping the Patient-Reported Outcomes Measurement Information System (PROMIS-29) to EQ-5D-5L.
Pharmacoeconomics. 2023 Feb;41(2):187-198. doi: 10.1007/s40273-022-01157-3. Epub 2022 Nov 7.
10
Modeling the Cost and Health Impacts of Diagnostic Strategies in Patients with Suspected Transthyretin Cardiac Amyloidosis.
J Am Heart Assoc. 2022 Sep 20;11(18):e026308. doi: 10.1161/JAHA.122.026308. Epub 2022 Sep 14.

本文引用的文献

1
Preference-Based EQ-5D index scores for chronic conditions in the United States.
Med Decis Making. 2006 Jul-Aug;26(4):410-20. doi: 10.1177/0272989X06290495.
2
A national catalog of preference-based scores for chronic conditions in the United States.
Med Care. 2005 Jul;43(7):736-49. doi: 10.1097/01.mlr.0000172050.67085.4f.
3
Valuations of EQ-5D health states: are the United States and United Kingdom different?
Med Care. 2005 Mar;43(3):221-8. doi: 10.1097/00005650-200503000-00004.
4
US valuation of the EQ-5D health states: development and testing of the D1 valuation model.
Med Care. 2005 Mar;43(3):203-20. doi: 10.1097/00005650-200503000-00003.
5
Mapping the SF-12 to the EuroQol EQ-5D Index in a national US sample.
Med Decis Making. 2004 May-Jun;24(3):247-54. doi: 10.1177/0272989X04265477.
6
Predicting EuroQoL EQ-5D preference scores from the SF-12 Health Survey in a nationally representative sample.
Med Decis Making. 2004 Mar-Apr;24(2):160-9. doi: 10.1177/0272989X04264015.
8
Measuring population health: a comparison of three generic health status measures.
Med Care. 2003 Feb;41(2):218-31. doi: 10.1097/01.MLR.0000044901.57067.19.
9
Estimating utility values for health states of type 2 diabetic patients using the EQ-5D (UKPDS 62).
Med Decis Making. 2002 Jul-Aug;22(4):340-9. doi: 10.1177/0272989X0202200412.
10
A comparison of methods for analyzing health-related quality-of-life measures.
Value Health. 2002 Jul-Aug;5(4):329-37. doi: 10.1046/j.1524-4733.2002.54128.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验