Sullivan Patrick W, Ghushchyan Vahram
University of Colorado School of Pharmacy, Pharmaceutical Outcomes Research Program, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA.
Med Decis Making. 2006 Jul-Aug;26(4):401-9. doi: 10.1177/0272989X06290496.
Previous mapping algorithms estimating EQ-5D index scores from the SF-12 were based on preferences from a UK community sample. However, preferences based on the general US population are most appropriate for costeffectiveness analyses done from the societal perspective in the United States.
To provide a mapping algorithm for estimating EQ-5D index scores from the SF-12 based on a nationally representative sample and using preferences based on the general US population:
The Medical Expenditure Panel Survey (MEPS) 2002 and 2000 data were used as independent derivation and validation sets to estimate the relationship between SF-12 scores and EQ-5D index scores, controlling for sociodemographic characteristics and comorbidity burden. Prediction equations for end-users who only have access to SF-12 scores were derived and compared. The empirical performance of censored least absolute deviations (CLAD), Tobit, and ordinary least squares (OLS) analytic methods were compared by calculating the mean prediction error in the validation set.
The fully specified CLAD model resulted in the lowest mean prediction error, followed by OLS and Tobit. The CLAD prediction equation based only on SF-12 scores performed better than the fully specified OLS and Tobit models.
The current research provides an algorithm for mapping EQ-5D index scores from the SF-12. This algorithm may provide analysts with an avenue to obtain appropriate preference-based health-related quality-of-life scores for use in cost-effectiveness analyses when only SF-12 data are available.
以往从SF-12量表估算EQ-5D指数得分的映射算法是基于英国社区样本的偏好得出的。然而,基于美国普通人群的偏好对于从美国社会视角进行的成本效益分析最为合适。
基于具有全国代表性的样本,并采用基于美国普通人群的偏好,提供一种从SF-12量表估算EQ-5D指数得分的映射算法。
使用2002年和2000年医疗支出面板调查(MEPS)数据作为独立的推导和验证集,以估算SF-12量表得分与EQ-5D指数得分之间的关系,同时控制社会人口学特征和合并症负担。推导并比较了仅能获取SF-12量表得分的终端用户的预测方程。通过计算验证集中的平均预测误差,比较了删失最小绝对偏差(CLAD)、托比特(Tobit)和普通最小二乘法(OLS)分析方法的实证性能。
完整设定的CLAD模型产生的平均预测误差最低,其次是OLS和Tobit。仅基于SF-12量表得分的CLAD预测方程比完整设定的OLS和Tobit模型表现更好。
当前研究提供了一种从SF-12量表映射EQ-5D指数得分的算法。当仅有SF-12数据可用时,该算法可为分析人员提供一条途径,以获得适用于成本效益分析的基于偏好的健康相关生活质量得分。