Raman Baranidharan, Sun Ping A, Gutierrez-Galvez Agustin, Gutierrez-Osuna Ricardo
IEEE Trans Neural Netw. 2006 Jul;17(4):1015-1024. doi: 10.1109/TNN.2006.875975.
This paper presents a computational model for chemical sensor arrays inspired by the first two stages in the olfactory pathway: distributed coding with olfactory receptor neurons and chemotopic convergence onto glomerular units. We propose a monotonic concentration-response model that maps conventional sensor-array inputs into a distributed activation pattern across a large population of neuroreceptors. Projection onto glomerular units in the olfactory bulb is then simulated with a self-organizing model of chemotopic convergence. The pattern recognition performance of the model is characterized using a database of odor patterns from an array of temperature modulated chemical sensors. The chemotopic code achieved by the proposed model is shown to improve the signal-to-noise ratio available at the sensor inputs while being consistent with results from neurobiology.
嗅觉受体神经元的分布式编码以及向肾小球单元的化学拓扑汇聚。我们提出了一种单调浓度响应模型,该模型将传统传感器阵列输入映射到大量神经受体上的分布式激活模式。然后,使用化学拓扑汇聚的自组织模型模拟向嗅球中肾小球单元的投射。该模型的模式识别性能使用来自温度调制化学传感器阵列的气味模式数据库进行表征。结果表明,所提出的模型实现的化学拓扑编码提高了传感器输入处的信噪比,同时与神经生物学结果一致。