Carroll Mark C, Outten Caryn E, Proescher Jody B, Rosenfeld Leah, Watson Walter H, Whitson Lisa J, Hart P John, Jensen Laran T, Cizewski Culotta Valeria
Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
J Biol Chem. 2006 Sep 29;281(39):28648-56. doi: 10.1074/jbc.M600138200. Epub 2006 Jul 31.
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.
铜锌超氧化物歧化酶(SOD1)的突变可通过涉及SOD1错误折叠的机制导致肌萎缩侧索硬化症(ALS),但调节SOD1折叠和稳定性的细胞内因子在很大程度上尚不清楚。通过使用酵母和哺乳动物表达系统,我们在此证明SOD1的稳定性受靶向SOD1二硫键的翻译后修饰因子的控制。发现人SOD1二硫键在体内的氧化涉及SOD1的铜伴侣蛋白(CCS)和铜激活的不依赖CCS的途径。当两条铜途径均被阻断时,野生型SOD1以减少的二硫键稳定地积累在酵母细胞中,而ALS SOD1突变体A4V、G93A和G37R则被降解。我们在此描述了硫醇氧化还原酶谷氧还蛋白在还原SOD1二硫键和使ALS突变体不稳定方面前所未有的作用。具体而言,酵母的主要胞质谷氧还蛋白在体内和体外均可还原ALS SOD1突变体A4V SOD1的分子内二硫键。相比之下,谷氧还蛋白对野生型SOD1的二硫键反应性较低。A4V SOD1的脱辅基形式与谷氧还蛋白反应性高,但与同时含有铜和锌的SOD1反应性低。因此,谷氧还蛋白优先靶向缺乏金属辅因子的ALS突变体SOD1的未成熟形式。总体而言,这些研究表明细胞还原剂如谷氧还蛋白和铜激活途径之间的关键平衡在体内控制SOD1的二硫键和稳定性。