Heinemann S H, Sigworth F J
Max-Planck-Institut für biophysikalische Chemie, Göttingen, Federal Republic of Germany.
Biophys J. 1990 Mar;57(3):499-514. doi: 10.1016/S0006-3495(90)82566-2.
We have measured the fluctuations in the current through gramicidin A (GA) channels in symmetrical solutions of monovalent cations of various concentrations, and compared the spectral density values with those computed using E. Frehland's theory for noise in discrete transport systems (Frehland, E. 1978. Biophys. Chem. 8:255-265). The noise for the transport of NH4+ and Na+ ions in glycerol-monooleate/squalene membranes could be accounted for entirely by "shot noise" in the process of transport through a single-filing pore with two ion binding sites. However, in confirmation of results in a previous paper (Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055-1064) currents of Cs+ showed a substantial excess noise at low ion concentrations, as did currents of K+ and Rb+. The excess noise was increased in thicker membranes. The observations are accounted for by a theory that postulates fluctuations of the entry rates of ions into the channel on a time scale of approximately 1 microsecond. These fluctuations occur preferentially when the channel is empty; the presence of bound ions stabilizes the "high conductance" conformation of the channel. The fluctuations are sensed to different degrees by the various ion species, and their kinetics depend on membrane thickness.
我们测量了在不同浓度单价阳离子的对称溶液中,通过短杆菌肽A(GA)通道的电流波动,并将频谱密度值与使用E. Frehland关于离散传输系统中噪声的理论计算得出的值进行了比较(Frehland, E. 1978. Biophys. Chem. 8:255 - 265)。在甘油单油酸酯/角鲨烯膜中,NH₄⁺和Na⁺离子传输产生的噪声完全可以由通过具有两个离子结合位点的单排孔传输过程中的“散粒噪声”来解释。然而,正如之前一篇论文(Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055 - 1064)的结果所证实的那样,Cs⁺电流在低离子浓度下显示出大量的过量噪声,K⁺和Rb⁺电流也是如此。在较厚的膜中,过量噪声增加。这些观察结果可以用一种理论来解释,该理论假设离子进入通道的速率在大约1微秒的时间尺度上存在波动。这些波动在通道为空时优先发生;结合离子的存在会稳定通道的“高电导”构象。不同离子种类对这些波动的感知程度不同,并且它们的动力学取决于膜的厚度。