Suppr超能文献

开放通道噪声。V. 短杆菌肽A通道中离子进入的波动屏障。

Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels.

作者信息

Heinemann S H, Sigworth F J

机构信息

Max-Planck-Institut für biophysikalische Chemie, Göttingen, Federal Republic of Germany.

出版信息

Biophys J. 1990 Mar;57(3):499-514. doi: 10.1016/S0006-3495(90)82566-2.

Abstract

We have measured the fluctuations in the current through gramicidin A (GA) channels in symmetrical solutions of monovalent cations of various concentrations, and compared the spectral density values with those computed using E. Frehland's theory for noise in discrete transport systems (Frehland, E. 1978. Biophys. Chem. 8:255-265). The noise for the transport of NH4+ and Na+ ions in glycerol-monooleate/squalene membranes could be accounted for entirely by "shot noise" in the process of transport through a single-filing pore with two ion binding sites. However, in confirmation of results in a previous paper (Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055-1064) currents of Cs+ showed a substantial excess noise at low ion concentrations, as did currents of K+ and Rb+. The excess noise was increased in thicker membranes. The observations are accounted for by a theory that postulates fluctuations of the entry rates of ions into the channel on a time scale of approximately 1 microsecond. These fluctuations occur preferentially when the channel is empty; the presence of bound ions stabilizes the "high conductance" conformation of the channel. The fluctuations are sensed to different degrees by the various ion species, and their kinetics depend on membrane thickness.

摘要

我们测量了在不同浓度单价阳离子的对称溶液中,通过短杆菌肽A(GA)通道的电流波动,并将频谱密度值与使用E. Frehland关于离散传输系统中噪声的理论计算得出的值进行了比较(Frehland, E. 1978. Biophys. Chem. 8:255 - 265)。在甘油单油酸酯/角鲨烯膜中,NH₄⁺和Na⁺离子传输产生的噪声完全可以由通过具有两个离子结合位点的单排孔传输过程中的“散粒噪声”来解释。然而,正如之前一篇论文(Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055 - 1064)的结果所证实的那样,Cs⁺电流在低离子浓度下显示出大量的过量噪声,K⁺和Rb⁺电流也是如此。在较厚的膜中,过量噪声增加。这些观察结果可以用一种理论来解释,该理论假设离子进入通道的速率在大约1微秒的时间尺度上存在波动。这些波动在通道为空时优先发生;结合离子的存在会稳定通道的“高电导”构象。不同离子种类对这些波动的感知程度不同,并且它们的动力学取决于膜的厚度。

相似文献

引用本文的文献

5
Bubbles, gating, and anesthetics in ion channels.离子通道中的气泡、门控与麻醉剂
Biophys J. 2008 Jun;94(11):4282-98. doi: 10.1529/biophysj.107.120493. Epub 2008 Jan 30.
6
A speed limit for conformational change of an allosteric membrane protein.变构膜蛋白构象变化的速度限制。
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):87-92. doi: 10.1073/pnas.0406777102. Epub 2004 Dec 23.

本文引用的文献

3
Thickness fluctuations in black lipid membranes.黑色脂质膜中的厚度波动。
Biophys J. 1982 Jun;38(3):251-8. doi: 10.1016/S0006-3495(82)84556-6.
7
Fluctuations of barrier structure in ionic channels.离子通道中屏障结构的波动。
Biochim Biophys Acta. 1980 Oct 16;602(1):167-80. doi: 10.1016/0005-2736(80)90299-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验