Suppr超能文献

东非和南部非洲采采蝇(Glossina morsitans morsitans Westwood)种群的遗传多样性和分化模式。

Patterns of genetic diversity and differentiation in the tsetse fly Glossina morsitans morsitans Westwood populations in East and southern Africa.

作者信息

Ouma J O, Marquez J G, Krafsur E S

机构信息

Department of Entomology, Iowa State University, Ames, Iowa 50011-3222, USA.

出版信息

Genetica. 2007 Jun;130(2):139-51. doi: 10.1007/s10709-006-9001-0. Epub 2006 Aug 4.

Abstract

Genetic diversity and differentiation within and among nine G. morsitans morsitans populations from East and southern Africa was assessed by examining variation at seven microsatellite loci and a mitochondrial locus, cytochrome oxidase (COI). Mean COI diversity within populations was 0.63+/-0.33 and 0.81 taken over all populations. Diversities averaged over microsatellite loci were high (mean number of alleles/locus>or=7.4; mean HE>or=65%) in all populations. Diversities averaged across populations were greater in East Africa (mean number of alleles=22+/-2.6; mean he=0.773+/-0.033) than in southern Africa (mean number of alleles=18.7+/-4.0; mean he=0.713+/-0.072). Differentiation among all populations was highly significant (RST=0.25, FST=0.132). Nei's Gij statistics were 0.09 and 0.19 within regions for microsatellites and mitochondria, respectively; between regions, Gij was 0.14 for microsatellites and 0.23 for mitochondria. GST among populations was 0.23 for microsatellite loci and 0.40 for mitochondria. The F, G and R statistics indicate highly restricted gene flow among G. m. morsitans populations separated over geographic scales of 12-917 km.

摘要

通过检测7个微卫星位点和1个线粒体细胞色素氧化酶(COI)位点的变异,评估了来自东非和南非的9个采采蝇种群内部及种群间的遗传多样性和分化情况。种群内COI的平均多样性为0.63±0.33,所有种群的平均值为0.81。所有种群微卫星位点的平均多样性较高(平均等位基因数/位点≥7.4;平均期望杂合度≥65%)。东非种群的平均多样性(平均等位基因数=22±2.6;平均期望杂合度=0.773±0.033)高于南非种群(平均等位基因数=18.7±4.0;平均期望杂合度=0.713±0.072)。所有种群间的分化非常显著(RST=0.25,FST=0.132)。微卫星和线粒体在区域内的内氏Gij统计值分别为0.09和0.19;区域间,微卫星的Gij为0.14,线粒体的为0.23。种群间微卫星位点的GST为0.23,线粒体的为0.40。F、G和R统计值表明,在地理距离为12 - 917公里的分离采采蝇种群间,基因流动受到高度限制。

相似文献

2
Genetic diversity and population structure of Glossina morsitans morsitans in the active foci of human African trypanosomiasis in Zambia and Malawi.
PLoS Negl Trop Dis. 2019 Jul 25;13(7):e0007568. doi: 10.1371/journal.pntd.0007568. eCollection 2019 Jul.
3
Microsatellite diversities and gene flow in the tsetse fly, Glossina morsitans s.l.
Med Vet Entomol. 2002 Sep;16(3):292-300. doi: 10.1046/j.1365-2915.2002.00378.x.
5
6
Genetic differentiation of some Glossina morsitans morsitans populations.
Med Vet Entomol. 1999 Oct;13(4):377-85. doi: 10.1046/j.1365-2915.1999.00185.x.
7
Population genetics of Glossina morsitans submorsitans (Diptera: Glossinidae).
Bull Entomol Res. 2000 Aug;90(4):329-35. doi: 10.1017/s0007485300000456.
8
Genetic differentiation of Glossina morsitans centralis populations.
Insect Mol Biol. 2001 Aug;10(4):387-95. doi: 10.1046/j.0962-1075.2001.00277.x.
9
Shared microsatellite loci in Glossina morsitans sensu lato (Diptera: Glossinidae).
J Med Entomol. 2006 May;43(3):640-2. doi: 10.1603/0022-2585(2006)43[640:smligm]2.0.co;2.
10
Diversity and phylogenetic relationships of Glossina populations in Nigeria and the Cameroonian border region.
BMC Microbiol. 2018 Nov 23;18(Suppl 1):180. doi: 10.1186/s12866-018-1293-6.

引用本文的文献

2
Genetic diversity and population structure of Glossina morsitans morsitans in the active foci of human African trypanosomiasis in Zambia and Malawi.
PLoS Negl Trop Dis. 2019 Jul 25;13(7):e0007568. doi: 10.1371/journal.pntd.0007568. eCollection 2019 Jul.
3
Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans.
BMC Microbiol. 2018 Nov 23;18(Suppl 1):169. doi: 10.1186/s12866-018-1289-2.
4
Nuclear and Wolbachia-based multimarker approach for the rapid and accurate identification of tsetse species.
BMC Microbiol. 2018 Nov 23;18(Suppl 1):147. doi: 10.1186/s12866-018-1295-4.
6
Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control.
J Invertebr Pathol. 2013 Mar;112 Suppl(0):S94-103. doi: 10.1016/j.jip.2012.05.010. Epub 2012 Jul 23.
10
Tsetse flies: genetics, evolution, and role as vectors.
Infect Genet Evol. 2009 Jan;9(1):124-41. doi: 10.1016/j.meegid.2008.09.010. Epub 2008 Oct 17.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
2
PERSPECTIVE: HIGHLY VARIABLE LOCI AND THEIR INTERPRETATION IN EVOLUTION AND CONSERVATION.
Evolution. 1999 Apr;53(2):313-318. doi: 10.1111/j.1558-5646.1999.tb03767.x.
3
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
4
Characterization of microsatellite markers in the tsetse fly, Glossina pallidipes (Diptera: Glossinidae).
Mol Ecol Notes. 2003 Sep;3(3):450-453. doi: 10.1046/j.1471-8286.2003.00480.x.
7
A standardized genetic differentiation measure.
Evolution. 2005 Aug;59(8):1633-8.
8
Tsetse genetics: contributions to biology, systematics, and control of tsetse flies.
Annu Rev Entomol. 2005;50:101-23. doi: 10.1146/annurev.ento.50.071803.130443.
9
DnaSP, DNA polymorphism analyses by the coalescent and other methods.
Bioinformatics. 2003 Dec 12;19(18):2496-7. doi: 10.1093/bioinformatics/btg359.
10
Some methods of estimating the inbreeding coefficient.
Am J Hum Genet. 1953 Jun;5(2):107-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验