Stauth Sean A, Parviz Babak A
Department of Electrical Engineering, The Paul G. Allen Center for Computer Science and Engineering, University of Washington, Room AE100R, Campus Box 352500, Seattle, WA 98195-2500, USA.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13922-7. doi: 10.1073/pnas.0602893103. Epub 2006 Sep 12.
We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-microm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems.
我们展示了利用自组装技术将独立的微米级组件,包括单晶硅场效应晶体管(FET)和扩散电阻器,集成到柔性塑料基板上。通过互补形状识别,并借助毛细管力、流体动力和重力,实现了多种微型组件在同一平台上的优先自组装。我们概述了一种微制造工艺,该工艺可生产出独立的、粉末状的单晶硅FET,用于自组装。在塑料上进行自组装FET的演示包括逻辑反相器,测得的电子迁移率为592 cm2/V-s。最后,我们将自组装工艺扩展到每个包含10,000个结合位点的基板上,并在25分钟内实现了100微米尺寸元件97%的自组装产率。本文所述的微米级功能器件的高产率自组装为宏观电子系统的生产提供了一种强大的方法。