Suppr超能文献

细菌趋化作用中受体/信号复合物的自组装。

Self-assembly of receptor/signaling complexes in bacterial chemotaxis.

作者信息

Wolanin Peter M, Baker Melinda D, Francis Noreen R, Thomas Dennis R, DeRosier David J, Stock Jeffry B

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14313-8. doi: 10.1073/pnas.0606350103. Epub 2006 Sep 14.

Abstract

Escherichia coli chemotaxis is mediated by membrane receptor/histidine kinase signaling complexes. Fusing the cytoplasmic domain of the aspartate receptor, Tar, to a leucine zipper dimerization domain produces a hybrid, lzTar(C), that forms soluble complexes with CheA and CheW. The three-dimensional reconstruction of these complexes was different from that anticipated based solely on structures of the isolated components. We found that analogous complexes self-assembled with a monomeric cytoplasmic domain fragment of the serine receptor without the leucine zipper dimerization domain. These complexes have essentially the same size, composition, and architecture as those formed from lzTar(C). Thus, the organization of these receptor/signaling complexes is determined by conserved interactions between the constituent chemotaxis proteins and may represent the active form in vivo. To understand this structure in its cellular context, we propose a model involving parallel membrane segments in receptor-mediated CheA activation in vivo.

摘要

大肠杆菌的趋化作用由膜受体/组氨酸激酶信号复合物介导。将天冬氨酸受体Tar的胞质结构域与亮氨酸拉链二聚化结构域融合,产生一种杂种蛋白lzTar(C),它能与CheA和CheW形成可溶性复合物。这些复合物的三维重构与仅基于分离组分的结构所预期的不同。我们发现,类似的复合物能与丝氨酸受体的单体胞质结构域片段自组装,该片段没有亮氨酸拉链二聚化结构域。这些复合物的大小、组成和结构与由lzTar(C)形成的复合物基本相同。因此,这些受体/信号复合物的组织由组成趋化蛋白之间保守的相互作用决定,可能代表体内的活性形式。为了在细胞环境中理解这种结构,我们提出了一个模型,该模型涉及体内受体介导的CheA激活中的平行膜段。

相似文献

1
Self-assembly of receptor/signaling complexes in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14313-8. doi: 10.1073/pnas.0606350103. Epub 2006 Sep 14.
2
Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy.
J Biol Chem. 2002 Sep 27;277(39):36755-9. doi: 10.1074/jbc.M204324200. Epub 2002 Jul 15.
3
Core unit of chemotaxis signaling complexes.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9390-5. doi: 10.1073/pnas.1104824108. Epub 2011 May 23.
4
Three-dimensional structure and organization of a receptor/signaling complex.
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17480-5. doi: 10.1073/pnas.0407826101. Epub 2004 Nov 30.
5
Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.
Science. 1996 Feb 23;271(5252):1113-6. doi: 10.1126/science.271.5252.1113.
6
An allosteric model for transmembrane signaling in bacterial chemotaxis.
J Mol Biol. 2004 Oct 15;343(2):291-303. doi: 10.1016/j.jmb.2004.08.046.
7
Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15623-8. doi: 10.1073/pnas.0506040102. Epub 2005 Oct 17.
10
Mechanism of CheA protein kinase activation in receptor signaling complexes.
Biochemistry. 1999 May 18;38(20):6651-8. doi: 10.1021/bi982839l.

引用本文的文献

1
Flavoproteins as native and genetically encoded spin probes for in cell ESR spectroscopy.
Nat Commun. 2025 Jul 1;16(1):5406. doi: 10.1038/s41467-025-60623-6.
2
Engineered chemotaxis core signaling units indicate a constrained kinase-off state.
Sci Signal. 2020 Nov 10;13(657):eabc1328. doi: 10.1126/scisignal.abc1328.
3
His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.
Biochemistry. 2017 Nov 7;56(44):5874-5885. doi: 10.1021/acs.biochem.7b00698. Epub 2017 Sep 22.
4
Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation.
Biochemistry. 2015 Jun 9;54(22):3454-68. doi: 10.1021/bi501570n. Epub 2015 May 28.
5
CheA-receptor interaction sites in bacterial chemotaxis.
J Mol Biol. 2012 Sep 14;422(2):282-90. doi: 10.1016/j.jmb.2012.05.023. Epub 2012 May 30.
6
Noise characteristics of the Escherichia coli rotary motor.
BMC Syst Biol. 2011 Sep 27;5:151. doi: 10.1186/1752-0509-5-151.
7
Core unit of chemotaxis signaling complexes.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9390-5. doi: 10.1073/pnas.1104824108. Epub 2011 May 23.
8
Electron cryotomography.
Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a003442. doi: 10.1101/cshperspect.a003442. Epub 2010 May 5.

本文引用的文献

1
Reconstruction of the chemotaxis receptor-kinase assembly.
Nat Struct Mol Biol. 2006 May;13(5):400-7. doi: 10.1038/nsmb1085. Epub 2006 Apr 23.
2
Receptor-receptor coupling in bacterial chemotaxis: evidence for strongly coupled clusters.
Biophys J. 2006 Jun 15;90(12):4317-26. doi: 10.1529/biophysj.105.079905. Epub 2006 Mar 24.
3
Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):592-6. doi: 10.1073/pnas.0510047103. Epub 2006 Jan 6.
4
Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15623-8. doi: 10.1073/pnas.0506040102. Epub 2005 Oct 17.
5
Making sense of it all: bacterial chemotaxis.
Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37. doi: 10.1038/nrm1524.
6
Three-dimensional structure and organization of a receptor/signaling complex.
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17480-5. doi: 10.1073/pnas.0407826101. Epub 2004 Nov 30.
7
Ligand-specific activation of Escherichia coli chemoreceptor transmethylation.
J Bacteriol. 2004 Nov;186(22):7556-63. doi: 10.1128/JB.186.22.7556-7563.2004.
9
Diversity in chemotaxis mechanisms among the bacteria and archaea.
Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.
10
Cellular stoichiometry of the components of the chemotaxis signaling complex.
J Bacteriol. 2004 Jun;186(12):3687-94. doi: 10.1128/JB.186.12.3687-3694.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验