Wu Wei, Chen Zhe, Gao Xiaorong, Li Yuanqing, Brown Emery N, Gao Shangkai
IEEE Trans Pattern Anal Mach Intell. 2015 Mar;37(3):639-53. doi: 10.1109/TPAMI.2014.2330598. Epub 2014 Jun 12.
Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task.
公共空间模式(CSP)是一种用于多通道脑电图(EEG)分析的著名空间滤波算法。在本文中,我们将CSP算法置于概率建模环境中。具体而言,概率CSP(P-CSP)被提出作为一个通用的EEG时空建模框架,它包含了CSP和正则化CSP算法。所提出的框架使我们能够以一种有原则的方式解决CSP的过拟合问题。我们推导了能够缓解局部最优问题的统计推断算法。特别是,针对各向同性噪声情况,开发了一种基于特征分解的高效算法用于最大后验(MAP)估计。对于更一般的情况,开发了一种变分算法用于P-CSP模型的组稀疏贝叶斯学习以及自动确定模型大小。所提出的两种算法在一个模拟数据集上得到了验证。它们的实际功效还通过成功应用于三个运动想象EEG数据集的单次试验分类以及对一项斯特鲁普颜色命名任务中记录的一个EEG数据集的时空模式分析得到了证明。