Suppr超能文献

随机效应在动物资源选择研究中的应用。

Application of random effects to the study of resource selection by animals.

作者信息

Gillies Cameron S, Hebblewhite Mark, Nielsen Scott E, Krawchuk Meg A, Aldridge Cameron L, Frair Jacqueline L, Saher D Joanne, Stevens Cameron E, Jerde Christopher L

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

出版信息

J Anim Ecol. 2006 Jul;75(4):887-98. doi: 10.1111/j.1365-2656.2006.01106.x.

Abstract
  1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
摘要
  1. 通过逻辑回归估计的资源选择在研究中越来越多地被用于识别动物种群的关键资源并预测物种出现情况。2. 最常见的是,对个体动物进行监测并汇总以估计种群水平的影响,而不考虑群体或个体水平的差异。汇总假设观测值及其误差都是独立的,并且在资源可利用性存在个体差异的情况下资源选择是恒定的。3. 尽管研究人员已经确定了将自相关最小化的方法,但由选择差异或可用资源差异(包括资源选择中的功能反应)导致的个体间差异尚未得到很好的解决。4. 在此,我们回顾随机效应模型及其在资源选择建模中的应用,以克服这些常见限制。我们给出一个简单的案例研究,分析加拿大落基山脉山麓地区有或没有随机效应时灰熊的资源选择情况。5. 灰熊模型中的分类变量和连续变量在解释上有所不同,无论是在统计显著性还是系数符号方面,这取决于随机效应的纳入方式。我们使用模拟方法来阐明在遥测研究的三种常见情况下随机效应的应用:(a)个体间样本量的差异;(b)在可用性恒定的情况下个体间选择的差异;以及(c)在资源选择中有或没有功能反应时可用性的差异。6. 我们发现随机截距解释了不平衡的样本设计,并且考虑到个体间选择的差异和选择中的功能反应,具有随机截距和系数的模型改善了模型拟合。我们的实证示例和模拟展示了在资源选择模型中纳入随机效应如何有助于解释并解决限制其通用性的困难假设。这种方法将使研究人员能够适当地估计边际(种群)和条件(个体)反应,并考虑复杂的分组、不平衡的样本设计和自相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验