Wood M A
Centre for Cell Engineering, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
J R Soc Interface. 2007 Feb 22;4(12):1-17. doi: 10.1098/rsif.2006.0149.
Substrate topography plays a vital role in cell and tissue structure and function in situ, where nanometric features, for example, the detail on single collagen fibrils, influence cell behaviour and resultant tissue formation. In vitro investigations demonstrate that nanotopography can be used to control cell reactions to a material surface, indicating its potential application in tissue engineering and implant fabrication. Developments in the catalyst, optical, medical and electronics industries have resulted in the production of nanopatterned surfaces using a variety of methods. The general protocols for nanomanufacturing require high resolution and low cost for fabricating devices. With respect to biological investigations, nanotopographies should occur across a large surface area (ensuring repeatability of experiments and patterning of implant surfaces), be reproducible (allowing for consistency in experiments), and preferably, accessible (limiting the requirement for specialist equipment). Colloidal lithography techniques fit these criteria, where nanoparticles can be utilized in combination with a functionalized substrate to produce in-plane nanotopographies. Subsequent lithographic processing of colloidal substrates utilizing, for example, reactive ion etching allows the production of modified colloidal-derived nanotopographies. In addition to two-dimensional in-plane nanofabrication, functionalized structures can be dip coated in colloidal sols, imparting nanotopographical cues to cells within a three-dimensional environment.
底物形貌在原位细胞和组织结构及功能中起着至关重要的作用,其中纳米级特征,例如单个胶原纤维的细节,会影响细胞行为及最终的组织形成。体外研究表明,纳米形貌可用于控制细胞对材料表面的反应,这表明其在组织工程和植入物制造中的潜在应用。催化剂、光学、医学和电子行业的发展使得人们使用多种方法制造出了纳米图案化表面。纳米制造的一般方案要求制造设备具有高分辨率和低成本。对于生物学研究而言,纳米形貌应覆盖较大的表面积(确保实验的可重复性和植入物表面的图案化)、可重现(保证实验的一致性),并且最好易于实现(限制对专业设备的需求)。胶体光刻技术符合这些标准,其中纳米颗粒可与功能化底物结合使用,以产生平面内纳米形貌。随后利用例如反应离子蚀刻对胶体底物进行光刻处理,可以制造出经过改性的源自胶体的纳米形貌。除了二维平面内纳米制造外,功能化结构还可以浸涂在胶体溶胶中,在三维环境中为细胞赋予纳米形貌线索。