文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于减弱玻璃表面纳米拓扑结构以增强间充质干细胞分化的DNA/磁性纳米颗粒复合材料

DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation.

作者信息

Ishmukhametov Ilnur, Batasheva Svetlana, Rozhina Elvira, Akhatova Farida, Mingaleeva Rimma, Rozhin Artem, Fakhrullin Rawil

机构信息

Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation.

出版信息

Polymers (Basel). 2022 Jan 17;14(2):344. doi: 10.3390/polym14020344.


DOI:10.3390/polym14020344
PMID:35054750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8779295/
Abstract

Mesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies. It was shown that MNPs@DNA coatings induced chondrogenesis and osteogenesis in hTERT-transduced MSCs. The cells had normal morphology and distribution of actin filaments. An increase in the concentration of magnetic nanoparticles resulted in a higher surface roughness and reduced the adhesion of cells to the substrate. A glass substrate modified with magnetic nanoparticles and DNA induced active chondrogenesis of hTERT-transduced MSC in a twice-diluted differentiation-inducing growth medium, suggesting the possible use of nanostructured MNPs@DNA coatings to obtain differentiated cells at a reduced level of growth factors.

摘要

间充质干细胞(MSCs)具有广泛的多能分化潜能,可分化为多种细胞类型,因此它们是再生医学和生物医学研究的重要工具。在这项工作中,研究了经hTERT转导的脂肪来源间充质干细胞(hMSCs)在由磁性氧化铁纳米颗粒(MNPs)和DNA产生的纳米拓扑结构底物上向软骨细胞、脂肪细胞和成骨细胞的分化。通过化学共沉淀法合成了柠檬酸盐稳定的MNPs,根据显微镜研究,其尺寸约为10纳米。结果表明,MNPs@DNA涂层可诱导经hTERT转导的MSCs发生软骨生成和成骨生成。细胞具有正常的形态和肌动蛋白丝分布。磁性纳米颗粒浓度的增加导致表面粗糙度更高,并降低了细胞与底物的粘附力。用磁性纳米颗粒和DNA修饰的玻璃底物在两倍稀释的诱导分化生长培养基中诱导经hTERT转导的MSC发生活跃的软骨生成,这表明纳米结构的MNPs@DNA涂层可能用于在降低生长因子水平的情况下获得分化细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/91d7d1192a97/polymers-14-00344-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/7769dc1db8db/polymers-14-00344-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/98cedb78d6c1/polymers-14-00344-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/95af715ea2b8/polymers-14-00344-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/8f1ae4c2a4d5/polymers-14-00344-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/bca4b33d915d/polymers-14-00344-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/71f71da06b59/polymers-14-00344-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/91d7d1192a97/polymers-14-00344-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/7769dc1db8db/polymers-14-00344-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/98cedb78d6c1/polymers-14-00344-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/95af715ea2b8/polymers-14-00344-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/8f1ae4c2a4d5/polymers-14-00344-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/bca4b33d915d/polymers-14-00344-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/71f71da06b59/polymers-14-00344-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6205/8779295/91d7d1192a97/polymers-14-00344-g007.jpg

相似文献

[1]
DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation.

Polymers (Basel). 2022-1-17

[2]
Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs.

Biomaterials. 2018-5-29

[3]
Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity.

Stem Cell Res Ther. 2015-8-18

[4]
Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.

Phytomedicine. 2018-9-5

[5]
Multimodal, rhodamine B isothiocyanate-incorporated, silica-coated magnetic nanoparticle–labeled human cord blood–derived mesenchymal stem cells for cell tracking

2004

[6]
Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair.

Biofabrication. 2022-3-14

[7]
Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood.

BMC Vet Res. 2012-9-22

[8]
Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways.

Tissue Eng Part B Rev. 2012-8-6

[9]
Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.

J Biomed Mater Res A. 2010-3-1

[10]
FluidMAG iron nanoparticle-labeled mesenchymal stem cells for tracking cell homing to tumors

2004

引用本文的文献

[1]
Mesenchymal stem cells: A new strategy for the treatment of femoral head necrosis.

Regen Ther. 2025-7-23

[2]
Magnetoactive Nanotopography on Hydrogels for Stimulated Cell Adhesion and Differentiation.

Small Sci. 2025-1-27

[3]
Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature.

Int J Nanomedicine. 2024-11-29

[4]
Cellular Alterations Due to Direct and Indirect Interaction of Nanomaterials with Nucleic Acids.

Int J Mol Sci. 2024-2-6

[5]
Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization.

Front Bioeng Biotechnol. 2023-12-19

[6]
Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods.

Int J Mol Sci. 2023-5-25

[7]
A Simplified and Efficient Method for Production of Manganese Ferrite Magnetic Nanoparticles and Their Application in DNA Isolation.

Int J Mol Sci. 2023-1-21

[8]
Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study.

Int J Mol Sci. 2022-12-29

[9]
Bifunctional 1,2,4-Triazole/12-Tungstophosphoric Acid Composite Nanoparticles for Biodiesel Production.

Nanomaterials (Basel). 2022-11-16

[10]
Role of Iron Oxide (FeO) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review.

Nanomaterials (Basel). 2022-11-2

本文引用的文献

[1]
The role of hollow magnetic nanoparticles in drug delivery.

RSC Adv. 2019-8-13

[2]
Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles.

RSC Adv. 2020-3-10

[3]
Sequence Does Not Matter: The Biomedical Applications of DNA-Based Coatings and Cores.

Int J Mol Sci. 2021-11-28

[4]
Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds.

Polymers (Basel). 2021-11-15

[5]
Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication.

Pharmaceutics. 2021-8-9

[6]
Biocompatibility of magnetic nanoparticles coating with polycations using A549 cells.

J Biotechnol. 2021-1-10

[7]
Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study.

Molecules. 2020-8-4

[8]
Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion.

RSC Adv. 2020

[9]
PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform.

Nanomaterials (Basel). 2020-4-2

[10]
Growth Factor Engineering Strategies for Regenerative Medicine Applications.

Front Bioeng Biotechnol. 2020-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索