Suppr超能文献

将血糖生成指数和血糖负荷值添加到24小时膳食回顾数据库的方法学。

Methodology for adding glycemic index and glycemic load values to 24-hour dietary recall database.

作者信息

Olendzki Barbara C, Ma Yunsheng, Culver Annie L, Ockene Ira S, Griffith Jennifer A, Hafner Andrea R, Hebert James R

机构信息

Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

出版信息

Nutrition. 2006 Nov-Dec;22(11-12):1087-95. doi: 10.1016/j.nut.2006.07.006. Epub 2006 Oct 9.

Abstract

OBJECTIVES

We describe a method of adding the glycemic index (GI) and glycemic load (GL) values to the nutrient database of the 24-hour dietary recall interview (24HR), a widely used dietary assessment. We also calculated daily GI and GL values from the 24HR.

METHODS

Subjects were 641 healthy adults from central Massachusetts who completed 9067 24HRs. The 24HR-derived food data were matched to the International Table of Glycemic Index and Glycemic Load Values. The GI values for specific foods not in the table were estimated against similar foods according to physical and chemical factors that determine GI. Mixed foods were disaggregated into individual ingredients.

RESULTS

Of 1261 carbohydrate-containing foods in the database, GI values of 602 foods were obtained from a direct match (47.7%), accounting for 22.36% of dietary carbohydrate. GI values from 656 foods (52.1%) were estimated, contributing to 77.64% of dietary carbohydrate. The GI values from three unknown foods (0.2%) could not be assigned. The average daily GI was 84 (SD 5.1, white bread as referent) and the average GL was 196 (SD 63).

CONCLUSION

Using this methodology for adding GI and GL values to nutrient databases, it is possible to assess associations between GI and/or GL and body weight and chronic disease outcomes (diabetes, cancer, heart disease). This method can be used in clinical and survey research settings where 24HRs are a practical means for assessing diet. The implications for using this methodology compel a broader evaluation of diet with disease outcomes.

摘要

目的

我们描述了一种将血糖生成指数(GI)和血糖负荷(GL)值添加到24小时膳食回顾访谈(24HR)营养数据库中的方法,24HR是一种广泛使用的膳食评估方法。我们还从24HR中计算了每日GI和GL值。

方法

研究对象为来自马萨诸塞州中部的641名健康成年人,他们完成了9067次24HR。将24HR得出的食物数据与国际血糖生成指数和血糖负荷值表进行匹配。根据决定GI的物理和化学因素,针对表中未列出的特定食物,依据相似食物估算其GI值。混合食物被分解为单个成分。

结果

数据库中1261种含碳水化合物的食物中,602种食物的GI值通过直接匹配获得(47.7%),占膳食碳水化合物的22.36%。估算了656种食物(52.1%)的GI值,占膳食碳水化合物的77.64%。三种未知食物(0.2%)的GI值无法确定。每日平均GI为84(标准差5.1,以白面包为参照),平均GL为196(标准差63)。

结论

使用这种将GI和GL值添加到营养数据库的方法,可以评估GI和/或GL与体重及慢性病结局(糖尿病、癌症、心脏病)之间的关联。这种方法可用于临床和调查研究环境,其中24HR是评估饮食的实用手段。使用这种方法的意义促使对饮食与疾病结局进行更广泛的评估。

相似文献

6
Glycemic index and glycemic load of commercial Italian foods.意大利商业食品的血糖生成指数和血糖负荷
Nutr Metab Cardiovasc Dis. 2016 May;26(5):419-29. doi: 10.1016/j.numecd.2016.02.013. Epub 2016 Feb 26.

引用本文的文献

本文引用的文献

4
Association between carbohydrate intake and serum lipids.碳水化合物摄入量与血脂之间的关联。
J Am Coll Nutr. 2006 Apr;25(2):155-63. doi: 10.1080/07315724.2006.10719527.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验