Suppr超能文献

用于控制电动肢体假肢的肌电信号处理

Myoelectric signal processing for control of powered limb prostheses.

作者信息

Parker P, Englehart K, Hudgins B

机构信息

Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, University of New Brunswick, 15 Dineen Drive, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3.

出版信息

J Electromyogr Kinesiol. 2006 Dec;16(6):541-8. doi: 10.1016/j.jelekin.2006.08.006. Epub 2006 Oct 11.

Abstract

Progress in myoelectric control technology has over the years been incremental, due in part to the alternating focus of the R&D between control methodology and device hardware. The technology has over the past 50 years or so moved from single muscle control of a single prosthesis function to muscle group activity control of multifunction prostheses. Central to these changes have been developments in the means of extracting information from the myoelectric signal. This paper gives an overview of the myoelectric signal processing challenge, a brief look at the challenge from an historical perspective, the state-of-the-art in myoelectric signal processing for prosthesis control, and an indication of where this field is heading. The paper demonstrates that considerable progress has been made in providing clients with useful and reliable myoelectric communication channels, and that exciting work and developments are on the horizon.

摘要

多年来,肌电控制技术的进展一直是渐进式的,部分原因在于研发工作在控制方法和设备硬件之间交替聚焦。在过去约50年里,该技术已从对单个假肢功能的单肌肉控制发展到对多功能假肢的肌肉群活动控制。这些变化的核心在于从肌电信号中提取信息的方式的发展。本文概述了肌电信号处理面临的挑战,从历史角度简要审视这一挑战,介绍了用于假肢控制的肌电信号处理的最新技术水平,并指出了该领域的发展方向。本文表明,在为用户提供有用且可靠的肌电通信渠道方面已取得了相当大的进展,并且令人兴奋的工作和发展即将到来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验