Vitte Clémentine, Bennetzen Jeffrey L
Department of Genetics, University of Georgia, Athens, GA 30602-7223, USA.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17638-43. doi: 10.1073/pnas.0605618103. Epub 2006 Nov 13.
Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with >10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with >1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were >1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages.
对五个二倍体被子植物基因组中的长末端重复序列(LTR)反转录转座子结构进行分析,发现不同类型的基因组多样性的相对水平差异很大。所有物种都表现出近期LTR反转录转座子的活性,同时通过不等位同源重组和异常重组进行DNA去除的速率也很高。较大的植物基因组包含许多每个单倍体基因组有超过10,000个拷贝的LTR反转录转座子家族,而较小的基因组中很少或没有每个单倍体基因组有超过1,000个拷贝的LTR反转录转座子家族,这表明这种反转录元件扩增的差异潜力是被子植物基因组大小变异的主要因素。在所研究的每个物种中,分化的LTR中转换与颠换突变的平均比率(Ts/Tv)都大于1.5,这表明这些元件在表观遗传沉默状态下大多在胞嘧啶处发生了5-甲基化。然而,与玉米(3.9)、苜蓿(3.6)和莲(2.5)相比,二倍体小麦一粒小麦和大麦的Ts/Tv值异常低(分别为1.9和1.6),这表明在这两个小麦族中这种沉默不太完全。点突变与插入缺失(插入和缺失)的比率以及不等位同源重组与异常重组相比去除DNA的相对效率等特征在不同物种之间差异很大。这些后期的变异与基因组大小或系统发育关系无关,表明它们在植物谱系的进化过程中经常发生变化。总之,结果表明被子植物基因组不同的大小、内容和结构是同一组机制过程的结果,但在不同的植物谱系中以不同的相对效率起作用。