Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
Genome Biol Evol. 2017 Dec 1;9(12):3449-3462. doi: 10.1093/gbe/evx260.
The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
转座元件 (TEs) 的积累和消除是真核生物基因组大小进化的主要驱动因素。在植物中,长末端重复 (LTR) 反转录转座子 (LTR-RTs) 代表了大多数 TEs,并形成了大基因组中大部分核 DNA。LTR 之间的不等交换 (UR) 导致插入序列的去除和单 LTR 的形成。UR 是许多被子植物 LTR-RT 去除的主要机制,但我们对针叶树大 LTR-RT 丰富基因组中 LTR-RT 相关重组的理解相当有限。我们采用一种新的基于读取的方法来估计四个针叶树和七个被子植物物种基因组中 LTR-RT 相关 UR 的相对速率。我们发现研究中最大的基因组,针叶树和被子植物玉米的 UR 速率最低。重组也可能以基因转换的形式解决,而不会去除序列,因此我们分析了挪威云杉和六个被子植物中 LTR-RT 相关基因转换事件 (GCE)。与 UR 的趋势相反,我们发现挪威云杉和玉米的 GCE 速率最高。与之前在被子植物中的工作不同,我们没有发现 UR 速率与针叶树中的逆转录元件结构特征相关的证据,这表明另一个过程抑制了这些物种中的 UR。来自不同真核生物的最新结果表明,异染色质通过有利于基因转换而不是交叉交换来影响重组的解决,这与我们观察到的 UR 和 GCE 相反的速率相似。通过形成异染色质来控制 LTR-RT 的增殖可能是携带高 LTR-RT 含量的真核生物中大型基因组的一个重要步骤。