Manoharan Christine, Wilson Marieangela C, Sessions Richard B, Halestrap Andrew P
Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol, UK.
Mol Membr Biol. 2006 Nov-Dec;23(6):486-98. doi: 10.1080/09687860600841967.
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure.
单羧酸转运蛋白MCT1 - MCT4需要基底细胞黏附分子(CD147)或embigin(gp70),这两种辅助蛋白在其单跨膜(TM)结构域中有一个谷氨酸残基,用于质膜(PM)表达和活性。在这里,我们使用定点诱变并在COS细胞或非洲爪蟾卵母细胞中表达,以研究这个谷氨酸(基底细胞黏附分子中的Glu218)是否可能与MCT1带正电荷的TM残基形成电荷对。基于已发表的大肠杆菌甘油 - 3 - 磷酸转运蛋白的结构,使用新的MCT1分子模型预测了此类残基。未获得MCT1的Arg306(TM 8)与基底细胞黏附分子的Glu218形成电荷对的证据;实际上,E218Q - 基底细胞黏附分子可以替代野生型基底细胞黏附分子,尽管E218R - 基底细胞黏附分子无活性。未观察到R306E - MCT1或D302R - MCT1的质膜表达,但D302R/R306D - MCT1到达了质膜,R306K - MCT1也是如此。然而,两者均无催化活性,这表明Arg306和Asp302以任何一种方向形成电荷对,但其精确的几何结构对于催化活性至关重要。将MCT1的TM3内的Arg86突变为Glu或Gln对MCT1的质膜表达或活性没有影响。然而,与野生型MCT1不同,这些突变体能够使E218R - 基底细胞黏附分子在COS细胞质膜上表达。我们提出MCT1的TM3与基底细胞黏附分子的TM并列,Arg86与基底细胞黏附分子的Glu218相邻。只有当这两个残基都带正电荷时(E218R - 基底细胞黏附分子与野生型MCT1),这种相互作用才会被阻止;这些位置上的所有其他残基配对可能通过电荷对或通过氢键使未电离残基稳定化或螺旋结构的局部扭曲来实现。