Teramae Jun-Nosuke, Fukai Tomoki
Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Saitama, Japan.
J Comput Neurosci. 2007 Jun;22(3):301-12. doi: 10.1007/s10827-006-0014-6. Epub 2007 Jan 17.
How cortical neurons process information crucially depends on how their local circuits are organized. Spontaneous synchronous neuronal activity propagating through neocortical slices displays highly diverse, yet repeatable, activity patterns called "neuronal avalanches". They obey power-law distributions of the event sizes and lifetimes, presumably reflecting the structure of local circuits developed in slice cultures. However, the explicit network structure underlying the power-law statistics remains unclear. Here, we present a neuronal network model of pyramidal and inhibitory neurons that enables stable propagation of avalanche-like spiking activity. We demonstrate a neuronal wiring rule that governs the formation of mutually overlapping cell assemblies during the development of this network. The resultant network comprises a mixture of feedforward chains and recurrent circuits, in which neuronal avalanches are stable if the former structure is predominant. Interestingly, the recurrent synaptic connections formed by this wiring rule limit the number of cell assemblies embeddable in a neuron pool of given size. We investigate how the resultant power laws depend on the details of the cell-assembly formation as well as on the inhibitory feedback. Our model suggests that local cortical circuits may have a more complex topological design than has previously been thought.
皮层神经元如何处理信息,关键取决于其局部回路的组织方式。通过新皮层切片传播的自发同步神经元活动呈现出高度多样但可重复的活动模式,称为“神经元雪崩”。它们服从事件大小和持续时间的幂律分布,这大概反映了切片培养中发育的局部回路结构。然而,幂律统计背后的明确网络结构仍不清楚。在这里,我们提出了一个由锥体神经元和抑制性神经元组成的神经网络模型,该模型能够实现类似雪崩的尖峰活动的稳定传播。我们展示了一种神经元布线规则,该规则在该网络的发育过程中控制相互重叠的细胞集合的形成。由此产生的网络包含前馈链和循环回路的混合,其中如果前一种结构占主导地位,神经元雪崩就是稳定的。有趣的是,由这种布线规则形成的循环突触连接限制了可嵌入给定大小神经元池中的细胞集合的数量。我们研究了由此产生的幂律如何依赖于细胞集合形成的细节以及抑制性反馈。我们的模型表明,局部皮层回路可能具有比以前认为的更复杂的拓扑设计。