Sarasij R C, Mayor Satyajit, Rao Madan
Raman Research Institute, Bangalore, India.
Biophys J. 2007 May 1;92(9):3140-58. doi: 10.1529/biophysj.106.085662. Epub 2007 Jan 19.
The formation of transport carriers (spherical vesicles and tubules) involves membrane budding, growth, and ultimately fission. We propose a mechanism of membrane budding, wherein the tilt and chirality of constituent molecules, confined to a patch of area A, induces buds of approximately 50-100 nm that are comparable to vesicles involved in endocytosis. Because such chiral and tilted lipid molecules are likely to exist in "rafts", we suggest the involvement of this mechanism in generating membrane buds in the clathrin and dynamin-independent, raft-component mediated endocytosis of glycosylphosphatidylinositol-anchored proteins. We argue that caveolae, permanent cell surface structures with characteristic morphology and enriched in raft constituents, are also likely to be formed by this mechanism. Thus, molecular chirality and tilt, and its expression over large spatial scales may be a common organizing principle in membrane budding of transport carriers.
运输载体(球形囊泡和小管)的形成涉及膜出芽、生长以及最终的裂变。我们提出了一种膜出芽机制,其中,局限于面积为A的区域内的组成分子的倾斜和手性会诱导出大小约为50 - 100纳米的芽,这与参与内吞作用的囊泡相当。由于这种手性和倾斜的脂质分子可能存在于“脂筏”中,我们认为该机制参与了糖基磷脂酰肌醇锚定蛋白的网格蛋白和发动蛋白非依赖性、脂筏成分介导的内吞作用中膜芽的产生。我们认为,小窝,即具有特征形态且富含脂筏成分的永久性细胞表面结构,也很可能是由这一机制形成的。因此,分子手性和倾斜及其在大空间尺度上的表达可能是运输载体膜出芽过程中的一个共同组织原则。