Heo Yun Seok, Cabrera Lourdes M, Song Jonathan W, Futai Nobuyuki, Tung Yi-Chung, Smith Gary D, Takayama Shuichi
Department of Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Anal Chem. 2007 Feb 1;79(3):1126-34. doi: 10.1021/ac061990v.
Evaporation is a critical problem when handling submicroliter volumes of fluids. This paper characterizes this problem as it applies to microfluidic cell culture in poly(dimethylsiloxane) (PDMS) devices and provides a practical solution. Evaporation-mediated osmolality shifts through PDMS membranes with varying thicknesses (10, 1, 0.2, or 0.1 mm) were measured over 96 h. Even in humidified cell culture incubators, evaporation through PDMS and associated shifts in the osmolality of culture media was significant and prevented mouse embryo and human endothelial cell growth and development. A simple diffusion model, where the measured diffusion coefficient for PDMS matches reported values of approximately 10-9 m2/s, accounts for these evaporation and osmolality shifts. To overcome this problem, a PDMS-parylene-PDMS hybrid membrane was developed that greatly suppresses evaporation and osmolality shifts, yet possesses thinness and the flexibility necessary to interface with deformation-based microfluidic actuation systems, maintains the clarity for optical microscopy, and enables the successful development of single-cell mouse embryos into blastocysts under static conditions and culture of human endothelial cells under dynamic recirculation of submicroliter volumes of media. These insights and methods demonstrated specifically for embryo and endothelial cell studies will be generally useful for understanding and overcoming evaporation-associated effects in microfluidic cell cultures.
在处理亚微升体积的流体时,蒸发是一个关键问题。本文描述了该问题在聚二甲基硅氧烷(PDMS)装置中的微流控细胞培养中的应用情况,并提供了一个切实可行的解决方案。在96小时内测量了通过不同厚度(10、1、0.2或0.1毫米)的PDMS膜的蒸发介导的渗透压变化。即使在加湿的细胞培养箱中,通过PDMS的蒸发以及培养基渗透压的相关变化也很显著,并且阻碍了小鼠胚胎和人类内皮细胞的生长与发育。一个简单的扩散模型(其中测量的PDMS扩散系数与报道的约10⁻⁹平方米/秒的值相符)可以解释这些蒸发和渗透压变化。为了克服这个问题,开发了一种PDMS-聚对二甲苯-PDMS复合膜,它能极大地抑制蒸发和渗透压变化,同时具有与基于变形的微流控驱动系统连接所需的薄度和柔韧性,保持光学显微镜观察所需的清晰度,并能在静态条件下使单细胞小鼠胚胎成功发育成囊胚,以及在亚微升体积培养基的动态再循环下培养人类内皮细胞。这些专门针对胚胎和内皮细胞研究证明的见解和方法,对于理解和克服微流控细胞培养中与蒸发相关的影响将具有普遍的用途。