Martin-Fernandez Marcos, Alberola-Lopez Carlos, Ruiz-Alzola Juan, Westin Carl-Fredrik
Laboratory of Mathematics in Imaging (LMI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Magn Reson Imaging. 2007 Feb;25(2):278-92. doi: 10.1016/j.mri.2006.05.001. Epub 2006 Dec 19.
We present three different sequential Wiener filters, namely, isotropic, orientation and anisotropic. The first one is similar to the classical Wiener filter in the sense that it uses an isotropic neighborhood to estimate its parameters. Here we present a sequential version of it. The orientation Wiener filter uses oriented neighborhoods to estimate the structure orientation present at each voxel, giving rise to a modified estimator of the parameters. Finally, the anisotropic Wiener filter combines both approaches adaptively so that the appropriate approach is locally selected. Several synthetic experiments are presented showing the performance of the filters with respect to their parameters. A mean square error analysis is performed using a publicly available magnetic resonance imaging (MRI) brain phantom and a comparison with other filtering approaches is carried out. In addition, results from filtering real MRI data are presented.
我们提出了三种不同的顺序维纳滤波器,即各向同性、方向和各向异性滤波器。第一种类似于经典维纳滤波器,因为它使用各向同性邻域来估计其参数。在此我们给出它的一个顺序版本。方向维纳滤波器使用有向邻域来估计每个体素处的结构方向,从而产生参数的修正估计器。最后,各向异性维纳滤波器自适应地结合了这两种方法,以便在局部选择合适的方法。给出了几个综合实验,展示了滤波器相对于其参数的性能。使用公开可用的磁共振成像(MRI)脑模型进行了均方误差分析,并与其他滤波方法进行了比较。此外,还给出了对真实MRI数据进行滤波的结果。