Suppr超能文献

利用卫星图像对具有环境意义的城市土地用途进行分类。

Classifying environmentally significant urban land uses with satellite imagery.

作者信息

Park Mi-Hyun, Stenstrom Michael K

机构信息

Department of Civil and Environmental Engineering, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1593, USA.

出版信息

J Environ Manage. 2008 Jan;86(1):181-92. doi: 10.1016/j.jenvman.2006.12.010. Epub 2007 Feb 8.

Abstract

We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads.

摘要

我们研究了贝叶斯网络,用于从卫星图像中对城市土地利用进行分类。陆地卫星增强型专题绘图仪Plus(ETM(+))图像被用于两个研究区域的分类:(1)加利福尼亚州圣莫尼卡湾流域的玛丽安德尔湾及其附近地区;(2)加利福尼亚州圣地亚哥市斯威特沃特水库附近的流域。使用四种不同的分类系统,贝叶斯网络对城市土地利用的分类准确率达到了80% - 95%。这些分类对于具有正常和降低辐射分辨率的小训练数据集来说是稳健的。网络样本大小仅需总数据的5%(即1500像素),准确分类仅需5或6位信息。该网络从其结构中明确显示了变量之间的关系,并且还能够利用非光谱数据中的信息。这种分类可用于为环境目的(如估算雨水污染物负荷)在大面积区域及时提供廉价的土地利用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验