Rivière C, Wilhelm C, Cousin F, Dupuis V, Gazeau F, Perzynski R
Laboratoire des Liquides Ioniques et Interfaces Chargées, UMR CNRS-UPMC-ESPCI 7612, 140 rue de Lourmel, 75015 Paris, France.
Eur Phys J E Soft Matter. 2007 Jan;22(1):1-10. doi: 10.1140/epje/e2007-00014-1. Epub 2007 Mar 3.
The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.
电子透射显微镜、磁光双折射动态探测和小角中子散射(SANS)结构探测。这些磁性囊泡是通过细胞与阴离子磁性氧化铁纳米颗粒之间的非特异性相互作用获得的磁性内体。借助磁纯化过程,在HeLa细胞内它们形成的两个不同阶段对其进行探测:(i)纳米颗粒吸附到细胞膜上,以及(ii)随后它们在内体内的内化。此处突出显示了磁性纳米颗粒在这两个不同阶段微环境的差异。吸附在细胞膜上并限制在内体内的磁性纳米颗粒的动力学分别比在水性介质中分离的磁性纳米颗粒慢3个和5个数量级。有趣的是,SANS实验表明,磁性内体具有接近修饰囊泡的内部结构,磁性纳米颗粒在内球体内局部修饰内体膜。这些结果对未来的生物医学应用很重要,表明修饰囊泡的多次融合是那种纳米材料内吞作用背后的生物学过程。