Suppr超能文献

图谱分层。

Atlas stratification.

作者信息

Blezek Daniel J, Miller James V

机构信息

GE Research, Niskayuna, NY 12309, USA.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):712-9. doi: 10.1007/11866565_87.

Abstract

The process of constructing an atlas typically involves selecting one individual from a sample on which to base or root the atlas. If the individual selected is far from the population mean, then the resulting atlas is biased towards this individual. This, in turn, can bias any inferences made with the atlas. Unbiased atlas construction addresses this issue by either basing the atlas on the individual which is the median of the sample or by an iterative technique whereby the atlas converges to the unknown population mean. In this paper, we explore the question of whether a single atlas is appropriate for a given sample or whether there is sufficient image based evidence from which we can infer multiple atlases, each constructed from a subset of the data. We refer to this process as atlas stratification. Essentially, we determine whether the sample, and hence the population, is multi-modal and is best represented by an atlas per mode. We use the mean shift algorithm to identify the modes of the sample and multidimensional scaling to visualize the clustering process.

摘要

构建图谱的过程通常涉及从样本中选择一个个体作为图谱的基础或根源。如果所选个体远离总体均值,那么生成的图谱就会偏向该个体。反过来,这可能会使基于该图谱所做的任何推断产生偏差。无偏图谱构建通过以下两种方式解决这个问题:一是将图谱基于样本中位数的个体,二是采用迭代技术,使图谱收敛到未知的总体均值。在本文中,我们探讨了对于给定样本,单个图谱是否合适的问题,或者是否有足够的基于图像的证据,使我们能够推断出多个图谱,每个图谱都由数据的一个子集构建而成。我们将这个过程称为图谱分层。本质上,我们要确定样本以及总体是否是多模态的,并且每个模态最好由一个图谱来表示。我们使用均值漂移算法来识别样本的模态,并使用多维缩放来可视化聚类过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验