Suppr超能文献

基于特征的形态计量学:发现与群组相关的解剖模式。

Feature-based morphometry: discovering group-related anatomical patterns.

机构信息

Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neuroimage. 2010 Feb 1;49(3):2318-27. doi: 10.1016/j.neuroimage.2009.10.032. Epub 2009 Oct 21.

Abstract

This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1).

摘要

本文提出了基于特征的形态测量学(FBM),这是一种新的完全数据驱动的技术,用于在容积成像中发现与组相关的解剖结构模式。与大多数形态测量学方法假设受试者之间存在一对一的对应关系不同,FBM 明确旨在识别可能仅存在于受试者子集(由于疾病或解剖变异性)中的独特解剖模式。该图像被建模为通用、局部化图像特征的拼贴画,这些特征不一定存在于所有受试者中。尺度空间理论用于分析图像特征在潜在解剖结构的特征尺度上,而不是在任意尺度(如全局或体素级)上。概率模型根据其外观、几何形状以及与受试者组的关系来描述特征,并从一组受试者图像和组标签中自动学习。从学习中得出的特征对应于与组相关的解剖结构,这些结构可以潜在地用作疾病的图像生物标志物,也可以作为计算机辅助诊断的基础。特征与组之间的关系通过特定组内特征出现的可能性与其余人群的可能性进行量化,并且特征显著性通过假发现率进行量化。实验使用免费提供的 OASIS 数据库,在对正常(NC)和阿尔茨海默病(AD)脑图像的分析中,从临床角度验证了 FBM。FBM 以完全数据驱动的方式自动识别 NC 和 AD 受试者之间的已知结构差异,并且对于年龄在 60-80 岁、表现出轻度 AD(CDR=1)的受试者,实现了 0.80 的等错误分类率。

相似文献

2
Feature-based morphometry.基于特征的形态测量学。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):109-16. doi: 10.1007/978-3-642-04271-3_14.
6
A statistical parts-based model of anatomical variability.一种基于统计部件的解剖变异模型。
IEEE Trans Med Imaging. 2007 Apr;26(4):497-508. doi: 10.1109/TMI.2007.892510.
8
A feature-based developmental model of the infant brain in structural MRI.基于特征的婴儿大脑结构MRI发育模型。
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):204-11. doi: 10.1007/978-3-642-33418-4_26.

引用本文的文献

5
Keypoint Transfer for Fast Whole-Body Segmentation.关键点迁移的快速全身分割。
IEEE Trans Med Imaging. 2020 Feb;39(2):273-282. doi: 10.1109/TMI.2018.2851194. Epub 2018 Jun 27.
8

本文引用的文献

1
A unified framework for MR based disease classification.基于磁共振成像的疾病分类统一框架。
Inf Process Med Imaging. 2009;21:300-13. doi: 10.1007/978-3-642-02498-6_25.
2
n-SIFT: n-dimensional scale invariant feature transform.n-SIFT:n维尺度不变特征变换。
IEEE Trans Image Process. 2009 Sep;18(9):2012-21. doi: 10.1109/TIP.2009.2024578. Epub 2009 Jun 5.
6
Discovering modes of an image population through mixture modeling.通过混合建模发现图像群体的模式。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
8
9
Automatic inference of sulcus patterns using 3D moment invariants.使用三维矩不变量自动推断脑沟模式。
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):515-22. doi: 10.1007/978-3-540-75757-3_63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验