Suppr超能文献

通过化学交换饱和转移成像(糖化学交换饱和转移成像,glycoCEST)在体内进行磁共振成像(MRI)检测糖原。

MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST).

作者信息

van Zijl Peter C M, Jones Craig K, Ren Jimin, Malloy Craig R, Sherry A Dean

机构信息

Division of Magnetic Resonance Research, Neurology Section, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64. doi: 10.1073/pnas.0700281104. Epub 2007 Mar 5.

Abstract

Detection of glycogen in vivo would have utility in the study of normal physiology and many disorders. Presently, the only magnetic resonance (MR) method available to study glycogen metabolism in vivo is (13)C MR spectroscopy, but this technology is not routinely available on standard clinical scanners. Here, we show that glycogen can be detected indirectly through the water signal by using selective radio frequency (RF) saturation of the hydroxyl protons in the 0.5- to 1.5-ppm frequency range downfield from water. The resulting saturated spins are rapidly transferred to water protons via chemical exchange, leading to partial saturation of the water signal, a process now known as chemical exchange saturation transfer. This effect is demonstrated in glycogen phantoms at magnetic field strengths of 4.7 and 9.4 T, showing improved detection at higher field in adherence with MR exchange theory. Difference images obtained during RF irradiation at 1.0 ppm upfield and downfield of the water signal showed that glycogen metabolism could be followed in isolated, perfused mouse livers at 4.7 T before and after administration of glucagon. Glycogen breakdown was confirmed by measuring effluent glucose and, in separate experiments, by (13)C NMR spectroscopy. This approach opens the way to image the distribution of tissue glycogen in vivo and to monitor its metabolism rapidly and noninvasively with MRI.

摘要

体内糖原的检测在正常生理学和许多疾病的研究中具有实用价值。目前,用于体内研究糖原代谢的唯一磁共振(MR)方法是碳-13(¹³C)MR波谱法,但这项技术在标准临床扫描仪上并非常规可用。在此,我们表明,通过使用水的0.5至1.5 ppm频率范围内的羟基质子的选择性射频(RF)饱和,可以通过水信号间接检测糖原。产生的饱和自旋通过化学交换迅速转移到水质子上,导致水信号部分饱和,这一过程现在称为化学交换饱和转移。这种效应在4.7和9.4 T磁场强度的糖原模型中得到了证实,表明在更高磁场下检测效果有所改善,这与MR交换理论相符。在水信号的上、下1.0 ppm处进行RF照射期间获得的差异图像表明,在4.7 T磁场下,给予胰高血糖素前后,在分离的灌注小鼠肝脏中可以追踪糖原代谢。通过测量流出的葡萄糖以及在单独的实验中通过¹³C NMR波谱法证实了糖原分解。这种方法为在体内成像组织糖原的分布以及用MRI快速、无创地监测其代谢开辟了道路。

相似文献

1
MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST).
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4359-64. doi: 10.1073/pnas.0700281104. Epub 2007 Mar 5.
2
Imaging the tissue distribution of glucose in livers using a PARACEST sensor.
Magn Reson Med. 2008 Nov;60(5):1047-55. doi: 10.1002/mrm.21722.
3
Magnetic resonance imaging of glycogen using its magnetic coupling with water.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3144-3149. doi: 10.1073/pnas.1909921117. Epub 2020 Jan 30.
7
Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments.
J Magn Reson. 2005 Aug;175(2):193-200. doi: 10.1016/j.jmr.2005.04.005.
8
[Evaluation of the Effect of Adiabatic Pulse and B1 Shim to the Radio Frequency Homogeneity in Chemical Shift Imaging].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016 Apr;72(4):326-33. doi: 10.6009/jjrt.2016_JSRT_72.4.326.
9
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.

引用本文的文献

1
Novel transferrin receptor-mediated enzyme replacement therapy efficiently treats myogenic and neurogenic aspects of Pompe disease in mice.
Mol Ther Methods Clin Dev. 2025 Aug 7;33(3):101547. doi: 10.1016/j.omtm.2025.101547. eCollection 2025 Sep 11.
2
Advances in magnetic resonance spectroscopy for metabolic disorders.
Front Endocrinol (Lausanne). 2025 Jul 18;16:1578333. doi: 10.3389/fendo.2025.1578333. eCollection 2025.
3
Going Above and Beyond: Achieving High Contrast and Higher Offset through Carbon Dot-Based diaCEST MRI Contrast Agent.
Chem Biomed Imaging. 2025 Jan 28;3(2):123-131. doi: 10.1021/cbmi.4c00086. eCollection 2025 Feb 24.
4
Chemical exchange saturation transfer MRI for neurodegenerative diseases: An update on clinical and preclinical studies.
Neural Regen Res. 2026 Feb 1;21(2):553-568. doi: 10.4103/NRR.NRR-D-24-01246. Epub 2025 Jan 29.
5
Molecular imaging of viral pathogenesis and opportunities for the future.
Npj Imaging. 2025;3(1):3. doi: 10.1038/s44303-024-00056-w. Epub 2025 Jan 24.
6
Recent developments in translational imaging of in vivo gene therapy outcomes.
Mol Ther. 2025 Jun 4;33(6):2548-2564. doi: 10.1016/j.ymthe.2024.12.049. Epub 2024 Dec 30.
7
In vivo imaging of glycogen in human muscle.
Nat Commun. 2024 Dec 30;15(1):10826. doi: 10.1038/s41467-024-55132-x.
8
Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange .
ACS Nano. 2024 Dec 17;18(50):33775-33791. doi: 10.1021/acsnano.4c05923. Epub 2024 Dec 6.

本文引用的文献

3
Sources of plasma glucose and liver glycogen in fasted ob/ob mice.
Acta Diabetol. 2005 Dec;42(4):187-93. doi: 10.1007/s00592-005-0201-3.
5
Tunable imaging of cells labeled with MRI-PARACEST agents.
Angew Chem Int Ed Engl. 2005 Mar 11;44(12):1813-5. doi: 10.1002/anie.200462566.
6
Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs. Zucker diabetic fatty rats by NMR analysis of plasma glucose.
Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E654-62. doi: 10.1152/ajpendo.00365.2004. Epub 2004 Nov 23.
8
Amide proton transfer (APT) contrast for imaging of brain tumors.
Magn Reson Med. 2003 Dec;50(6):1120-6. doi: 10.1002/mrm.10651.
9
Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.
Nat Med. 2003 Aug;9(8):1085-90. doi: 10.1038/nm907. Epub 2003 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验