Haghnia Marjan, Cavalli Valeria, Shah Sameer B, Schimmelpfeng Kristina, Brusch Richard, Yang Ge, Herrera Cheryl, Pilling Aaron, Goldstein Lawrence S B
Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683, USA.
Mol Biol Cell. 2007 Jun;18(6):2081-9. doi: 10.1091/mbc.e06-08-0695. Epub 2007 Mar 14.
Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein (Mallik and Gross, 2004). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments (Karki and Holzbaur, 1999). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis (Puls et al., 2003). Thus, it is essential to understand the in vivo function of dynactin. To test directly and rigorously the hypothesis that dynactin is required to attach dynein to membranes, we used both a Drosophila mutant and RNA interference to generate organisms and cells lacking the critical dynactin subunit, actin-related protein 1. Contrary to expectation, we found that apparently normal amounts of dynein associate with membrane compartments in the absence of a fully assembled dynactin complex. In addition, anterograde and retrograde organelle movement in dynactin deficient axons was completely disrupted, resulting in substantial changes in vesicle kinematic properties. Although effects on retrograde transport are predicted by the proposed function of dynactin as a regulator of dynein processivity, the additional effects we observed on anterograde transport also suggest potential roles for dynactin in mediating kinesin-driven transport and in coordinating the activity of opposing motors (King and Schroer, 2000).
细胞和神经元囊泡、细胞器及其他颗粒沿着微管的运输需要分子运动蛋白动力蛋白(马利克和格罗斯,2004年)。动力蛋白发挥功能的关键是动力蛋白激活蛋白,这是一种多蛋白复合体,通常被认为是动力蛋白附着于膜性区室所必需的(卡尔基和霍尔兹鲍尔,1999年)。最近的研究还发现,动力蛋白激活蛋白的突变可导致人类运动神经元疾病肌萎缩侧索硬化症(普尔兹等人,2003年)。因此,了解动力蛋白激活蛋白在体内的功能至关重要。为了直接且严格地验证动力蛋白激活蛋白是动力蛋白附着于膜所必需的这一假说,我们利用果蝇突变体和RNA干扰技术,培育出缺乏关键动力蛋白激活蛋白亚基即肌动蛋白相关蛋白1的生物体和细胞。与预期相反,我们发现,在缺乏完全组装的动力蛋白激活蛋白复合体的情况下,动力蛋白与膜性区室的结合量显然正常。此外,在缺乏动力蛋白激活蛋白的轴突中,细胞器的顺行和逆行运动完全被破坏,导致囊泡运动学特性发生显著变化。虽然动力蛋白激活蛋白作为动力蛋白持续性调节剂的假定功能可以预测其对逆行运输的影响,但我们观察到的对顺行运输的额外影响也表明,动力蛋白激活蛋白在介导驱动蛋白驱动的运输以及协调相反方向运动蛋白的活性方面可能发挥作用(金和施勒尔,2000年)。