Suppr超能文献

挤压综合征风险评估的预测模型:一种数据挖掘方法。

Predictive model for estimating risk of crush syndrome: a data mining approach.

作者信息

Aoki Noriaki, Demsar Janez, Zupan Blaz, Mozina Martin, Pretto Ernesto A, Oda Jun, Tanaka Hiroshi, Sugimoto Katsuhiko, Yoshioka Toshiharu, Fukui Tsuguya

机构信息

School of Health Information Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA.

出版信息

J Trauma. 2007 Apr;62(4):940-5. doi: 10.1097/01.ta.0000229795.01720.1e.

Abstract

BACKGROUND

There is no standard triage method for earthquake victims with crush injuries because of a scarcity of epidemiologic and quantitative data. We conducted a retrospective cohort study to develop predictive models based on clinical data for crush injury in the Kobe earthquake.

METHODS

The medical records of 372 patients with crush injuries from the Kobe earthquake were retrospectively analyzed. Twenty-one risk factors were assessed with logistic regression analysis for three outcomes relating to crush syndrome. Two types of predictive triage models--initial evaluation in the field and secondary assessment at the hospital--were developed using logistic regression analysis. Classification accuracy, Brier score and area under the receiver operating characteristic curve (AUC) were used to evaluate the model.

RESULTS

The initial triage model, which includes pulse rate, delayed rescue, and abnormal urine color, has an AUC of 0.73. The secondary model, which includes WBC, tachycardia, abnormal urine color, and hyperkalemia, shows an AUC of 0.76.

CONCLUSIONS

These triage models may be especially useful to nondisaster experts for distinguishing earthquake victims at high risk of severe crush syndrome from those at lower risk. Application of the model may allow relief workers to better utilize limited medical and transportation resources in the aftermath of a disaster.

摘要

背景

由于缺乏流行病学和定量数据,对于挤压伤地震受害者尚无标准的分诊方法。我们进行了一项回顾性队列研究,以基于神户地震中挤压伤的临床数据开发预测模型。

方法

对神户地震中372例挤压伤患者的病历进行回顾性分析。通过逻辑回归分析评估21个危险因素与挤压综合征相关的三个结局。使用逻辑回归分析开发了两种类型的预测分诊模型——现场初始评估和医院二次评估。使用分类准确性、布里尔评分和受试者工作特征曲线下面积(AUC)来评估模型。

结果

初始分诊模型包括脉搏率、救援延迟和尿液颜色异常,其AUC为0.73。二次模型包括白细胞、心动过速、尿液颜色异常和高钾血症,其AUC为0.76。

结论

这些分诊模型对于非灾难专家区分严重挤压综合征高风险的地震受害者和低风险的受害者可能特别有用。该模型的应用可能使救援人员在灾难后更好地利用有限的医疗和运输资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验