Suppr超能文献

通过紫外线杀菌照射使表面的病毒失活。

Inactivation of viruses on surfaces by ultraviolet germicidal irradiation.

作者信息

Tseng Chun-Chieh, Li Chih-Shan

机构信息

Graduate Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.

出版信息

J Occup Environ Hyg. 2007 Jun;4(6):400-5. doi: 10.1080/15459620701329012.

Abstract

In many outbreaks caused by viruses, the transmission of the agents can occur through contaminated environmental surfaces. Because of the increasing incidence of viral infections, there is a need to evaluate novel engineering control methods for inactivation of viruses on surfaces. Ultraviolet germicidal irradiation (UVGI) is considered a promising method to inactivate viruses. This study evaluated UVGI effectiveness for viruses on the surface of gelatin-based medium in a UV exposure chamber. The effects of UV dose, viral nucleic acid type (single-stranded RNA, ssRNA; single-stranded DNA, ssDNA; double-stranded RNA, dsRNA; and double-stranded DNA, dsDNA), and relative humidity on the virus survival fraction were investigated. For 90% viral reduction, the UV dose was 1.32 to 3.20 mJ/cm2 for ssRNA, 2.50 to to 4.47 mJ/cm2 for ssDNA, 3.80 to 5.36 mJ/cm2 for dsRNA, and 7.70 to 8.13 mJ/cm2 for dsDNA. For all four tested viruses, the UV dose for 99% viral reduction was 2 times higher than those for 90% viral reduction. Viruses on a surface with single-stranded nucleic acid (ssRNA and ssDNA) were more susceptible to UV inactivation than viruses with double-stranded nucleic acid (dsRNA and dsDNA). For the same viral reduction, the UV dose at 85% relative humidity (RH) was higher than that at 55% RH. In summary, results showed that UVGI was an effective method for inactivation of viruses on surfaces.

摘要

在许多由病毒引起的疫情中,病原体可通过受污染的环境表面传播。由于病毒感染的发病率不断上升,有必要评估用于使表面病毒失活的新型工程控制方法。紫外线杀菌辐照(UVGI)被认为是一种很有前景的病毒灭活方法。本研究在紫外线暴露箱中评估了UVGI对明胶基培养基表面病毒的有效性。研究了紫外线剂量、病毒核酸类型(单链RNA,ssRNA;单链DNA,ssDNA;双链RNA,dsRNA;双链DNA,dsDNA)和相对湿度对病毒存活分数的影响。对于90%的病毒减少率,ssRNA的紫外线剂量为1.32至3.20 mJ/cm2,ssDNA为2.50至4.47 mJ/cm2,dsRNA为3.80至5.36 mJ/cm2,dsDNA为7.70至8.13 mJ/cm2。对于所有四种测试病毒,99%病毒减少率的紫外线剂量是90%病毒减少率的紫外线剂量的2倍。单链核酸(ssRNA和ssDNA)表面的病毒比双链核酸(dsRNA和dsDNA)表面的病毒对紫外线灭活更敏感。对于相同的病毒减少率,相对湿度85%(RH)时的紫外线剂量高于相对湿度55%时的紫外线剂量。总之,结果表明UVGI是使表面病毒失活的有效方法。

相似文献

1
Inactivation of viruses on surfaces by ultraviolet germicidal irradiation.
J Occup Environ Hyg. 2007 Jun;4(6):400-5. doi: 10.1080/15459620701329012.
2
UVC Inactivation of dsDNA and ssRNA Viruses in Water: UV Fluences and a qPCR-Based Approach to Evaluate Decay on Viral Infectivity.
Food Environ Virol. 2014 Dec;6(4):260-8. doi: 10.1007/s12560-014-9157-1. Epub 2014 Jun 22.
3
Effect of ultraviolet germicidal irradiation on viral aerosols.
Environ Sci Technol. 2007 Aug 1;41(15):5460-5. doi: 10.1021/es070056u.
4
UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR.
Water Res. 2005 Sep;39(15):3643-9. doi: 10.1016/j.watres.2005.06.013.
5
The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis.
J Photochem Photobiol B. 2012 Feb 6;107:1-8. doi: 10.1016/j.jphotobiol.2011.10.012. Epub 2011 Nov 10.
6
Inactivation of feline calicivirus using ultraviolet light-emitting diodes.
FEMS Microbiol Lett. 2018 Sep 1;365(18). doi: 10.1093/femsle/fny194.
7
8
Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers.
Appl Environ Microbiol. 2006 Dec;72(12):7671-7. doi: 10.1128/AEM.01106-06. Epub 2006 Oct 13.
9
Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum.
Appl Environ Microbiol. 2015 Dec 28;82(5):1468-1474. doi: 10.1128/AEM.02773-15.
10
Bacteriophage inactivation by UV-A illuminated fullerenes: role of nanoparticle-virus association and biological targets.
Environ Sci Technol. 2012 Jun 5;46(11):5963-70. doi: 10.1021/es300340u. Epub 2012 May 10.

引用本文的文献

1
Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission.
Pathogens. 2025 Jul 30;14(8):750. doi: 10.3390/pathogens14080750.
2
Antiviral effect of 222 nm far-UVC light against human coronavirus and rhinovirus, and murine norovirus using dried inocula.
Infect Prev Pract. 2025 Jun 14;7(3):100473. doi: 10.1016/j.infpip.2025.100473. eCollection 2025 Sep.
3
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk.
J Build Eng. 2023 Aug 15;73:106737. doi: 10.1016/j.jobe.2023.106737. Epub 2023 May 8.
4
Fight Against COVID-19: ARCI's Technologies for Disinfection.
Trans Indian Natl Acad Eng. 2020;5(2):349-354. doi: 10.1007/s41403-020-00153-3. Epub 2020 Jul 14.
6
Best Practices for Germicidal Ultraviolet-C Dose Measurement for N95 Respirator Decontamination.
J Res Natl Inst Stand Technol. 2021 Oct 20;126:126020. doi: 10.6028/jres.126.020. eCollection 2021.
7
SARS-CoV-2 Ultraviolet Radiation Dose-Response Behavior.
J Res Natl Inst Stand Technol. 2021 Aug 20;126:126018. doi: 10.6028/jres.126.018. eCollection 2021.
8
Estimation of the Ultraviolet-C Doses from Mercury Lamps and Light-Emitting Diodes Required to Disinfect Surfaces.
J Res Natl Inst Stand Technol. 2021 Aug 20;126:126025. doi: 10.6028/jres.vol.126.025. eCollection 2021.
9
UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities' Wheelchairs.
Life (Basel). 2024 Feb 16;14(2):256. doi: 10.3390/life14020256.
10
UVC-LED-based face mask design and efficacy against common germs.
Arh Hig Rada Toksikol. 2023 Dec 29;74(4):282-287. doi: 10.2478/aiht-2023-74-3766. eCollection 2022.

本文引用的文献

1
THE KILLING OF COLON BACILLI BY ULTRAVIOLET LIGHT.
J Gen Physiol. 1932 Jan 20;15(3):351-61. doi: 10.1085/jgp.15.3.351.
2
THE EFFECT OF CATHODE RAYS UPON CERTAIN BACTERIA.
J Exp Med. 1930 May 31;51(6):921-32. doi: 10.1084/jem.51.6.921.
3
The Lethal Action of Short Ultraviolet Rays on Several Common Pathogenic Bacteria.
J Bacteriol. 1939 Apr;37(4):447-60. doi: 10.1128/jb.37.4.447-460.1939.
5
Effect of Biocides on MS2 and K Coliphages.
Appl Environ Microbiol. 1994 Jun;60(6):2205-6. doi: 10.1128/aem.60.6.2205-2206.1994.
6
Efficacy of various disinfectants against SARS coronavirus.
J Hosp Infect. 2005 Oct;61(2):107-11. doi: 10.1016/j.jhin.2004.12.023.
8
The impact of the SARS outbreak on an urban emergency department in Taiwan.
Med Care. 2005 Feb;43(2):168-72. doi: 10.1097/00005650-200502000-00010.
9
SARS outbreak in Taiwan.
Emerg Infect Dis. 2004 Aug;10(8):1514-5; author reply 1515-6. doi: 10.3201/eid1008.040115.
10
Severe acute respiratory syndrome coronavirus on hospital surfaces.
Clin Infect Dis. 2004 Sep 1;39(5):652-7. doi: 10.1086/422652. Epub 2004 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验