Higgins Erin R, Goel Pranay, Puglisi Jose L, Bers Donald M, Cannell Mark, Sneyd James
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
J Theor Biol. 2007 Aug 21;247(4):623-44. doi: 10.1016/j.jtbi.2007.03.019. Epub 2007 Mar 24.
Microdomains of calcium (i.e., areas on the nanometer scale that have qualitatively different calcium concentrations from that in the bulk cytosol) are known to be important in many situations. In cardiac cells, for instance, a calcium microdomain between the L-type channels and the ryanodine receptors, the so-called diadic cleft, is where the majority of the control of calcium release occurs. In other cell types that exhibit calcium oscillations and waves, the importance of microdomains in the vicinity of clusters of inositol trisphosphate receptors, or between the endoplasmic reticulum (ER) and other internal organelles or the plasma membrane, is clear. Given the limits of computational power, it is not currently realistic to model an entire cellular cytoplasm by incorporating detailed structural information about the ER throughout the entire cytoplasm. Hence, most models use a homogenised approach, assuming that both cytoplasm and ER coexist at each point of the domain. Conversely, microdomain models can be constructed, in which detailed structural information can be incorporated, but, until now, methods have not been developed for linking such a microdomain model to a model at the level of the entire cell. Using the homogenisation approach we developed in an earlier paper [Goel, P., Friedman, A., Sneyd, J., 2006. Homogenization of the cell cytoplasm: the calcium bidomain equations. SIAM J. Multiscale Modeling Simulation, in press] we show how a multiscale model of a calcium microdomain can be constructed. In this model a detailed model of the microdomain (in which the ER and the cytoplasm are separate compartments) is coupled to a homogenised model of the entire cell in a rigorous way. Our method is illustrated by a simple model of the diadic cleft of a cardiac half-sarcomere.
钙微区(即纳米尺度上钙浓度与胞质溶胶主体定性不同的区域)在许多情况下都很重要。例如,在心肌细胞中,L型通道和兰尼碱受体之间的钙微区,即所谓的二联体裂隙,是钙释放控制的主要发生部位。在其他表现出钙振荡和波动的细胞类型中,肌醇三磷酸受体簇附近、内质网(ER)与其他内部细胞器或质膜之间的微区的重要性是显而易见的。鉴于计算能力的限制,通过纳入整个细胞质中关于内质网的详细结构信息来对整个细胞细胞质进行建模目前并不现实。因此,大多数模型采用均匀化方法,假设细胞质和内质网在区域的每个点共存。相反,可以构建微区模型,其中可以纳入详细的结构信息,但到目前为止,尚未开发出将这种微区模型与整个细胞水平的模型相连接的方法。利用我们在早期论文[Goel, P., Friedman, A., Sneyd, J., 2006.细胞细胞质的均匀化:钙双域方程。SIAM J. Multiscale Modeling Simulation,即将发表]中开发的均匀化方法,我们展示了如何构建钙微区的多尺度模型。在这个模型中,微区的详细模型(其中内质网和细胞质是分开的隔室)以严格的方式与整个细胞的均匀化模型耦合。我们的方法通过心肌半肌节二联体裂隙的简单模型进行说明。