Alsberg Eben, Feinstein Efraim, Joy M P, Prentiss Mara, Ingber Donald E
Vascular Biology Program, Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115-5737, USA.
Tissue Eng. 2006 Nov;12(11):3247-56. doi: 10.1089/ten.2006.12.3247.
The development of effective biological scaffold materials for tissue engineering and regenerative medicine applications hinges on the ability to present precise environmental cues to specific cell populations to guide their position and function. Natural extracellular matrices have an ordered nano-scale structure that can modulate cell behaviors critical for developmental control, including directional cell motility. Here we describe a method for fabricating fibrin gels with defined architecture on the nanometer scale in which magnetic forces are used to position thrombin-coated magnetic micro-beads in a defined 2-dimensional array and thereby guide the self-assembly of fibrin fibrils through catalytic cleavage of soluble fibrinogen substrate. Time-lapse and confocal microscopy confirmed that fibrin fibrils nucleate near the surface of the thrombin-coated beads and extend out in a radial direction to form these gels. When controlled magnetic fields were used to position the beads in hexagonal arrays, the fibrin nano-fibrils that polymerized from the beads oriented preferentially along the bead--bead axes in a geodesic (minimal path) pattern. These biocompatible scaffolds supported adhesion and spreading of human microvascular endothelial cells, which exhibited co-alignment of internal actin stress fibers with underlying fibrin nano-fibrils within some membrane extensions at the cell periphery. This magnetically-guided, biologically-inspired microfabrication system is unique in that large scaffolds may be formed with little starting material, and thus it may be useful for in vivo tissue engineering applications in the future.
用于组织工程和再生医学应用的有效生物支架材料的开发取决于向特定细胞群体提供精确环境线索以指导其位置和功能的能力。天然细胞外基质具有有序的纳米级结构,可调节对发育控制至关重要的细胞行为,包括定向细胞运动。在此,我们描述了一种在纳米尺度上制造具有确定结构的纤维蛋白凝胶的方法,其中利用磁力将包被凝血酶的磁性微珠定位在确定的二维阵列中,从而通过可溶性纤维蛋白原底物的催化裂解来引导纤维蛋白原纤维的自组装。延时和共聚焦显微镜证实,纤维蛋白原纤维在包被凝血酶的珠子表面附近成核,并沿径向延伸以形成这些凝胶。当使用可控磁场将珠子定位在六边形阵列中时,从珠子聚合的纤维蛋白纳米纤维优先沿珠子-珠子轴以测地线(最小路径)模式排列。这些生物相容性支架支持人类微血管内皮细胞的黏附和铺展,在细胞周边的一些膜延伸部分,内皮细胞内的肌动蛋白应力纤维与下面的纤维蛋白纳米纤维呈现共排列。这种磁引导、受生物启发的微制造系统的独特之处在于,只需很少的起始材料就能形成大型支架,因此它可能对未来的体内组织工程应用有用。