Zou Quan, Destexhe Alain
Integrative and Computational Neuroscience Unit, CNRS, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
Biol Cybern. 2007 Jul;97(1):81-97. doi: 10.1007/s00422-007-0155-3. Epub 2007 May 25.
Spike-timing dependent plasticity (STDP) is a type of synaptic modification found relatively recently, but the underlying biophysical mechanisms are still unclear. Several models of STDP have been proposed, and differ by their implementation, and in particular how synaptic weights saturate to their minimal and maximal values. We analyze here kinetic models of transmitter-receptor interaction and derive a series of STDP models. In general, such kinetic models predict progressive saturation of the weights. Various forms can be obtained depending on the hypotheses made in the kinetic model, and these include a simple linear dependence on the value of the weight ("soft bounds"), mixed soft and abrupt saturation ("hard bound"), or more complex forms. We analyze in more detail simple soft-bound models of Hebbian and anti-Hebbian STDPs, in which nonlinear spike interactions (triplets) are taken into account. We show that Hebbian STDPs can be used to selectively potentiate synapses that are correlated in time, while anti-Hebbian STDPs depress correlated synapses, despite the presence of nonlinear spike interactions. This correlation detection enables neurons to develop a selectivity to correlated inputs. We also examine different versions of kinetics-based STDP models and compare their sensitivity to correlations. We conclude that kinetic models generally predict soft-bound dynamics, and that such models seem ideal for detecting correlations among large numbers of inputs.
尖峰时间依赖可塑性(STDP)是一种相对较新发现的突触修饰类型,但其潜在的生物物理机制仍不清楚。已经提出了几种STDP模型,它们在实现方式上有所不同,特别是在突触权重如何饱和到其最小值和最大值方面。我们在此分析递质-受体相互作用的动力学模型,并推导了一系列STDP模型。一般来说,这种动力学模型预测权重会逐渐饱和。根据动力学模型中所做的假设,可以得到各种形式,其中包括对权重值的简单线性依赖(“软边界”)、软饱和与突然饱和的混合(“硬边界”)或更复杂的形式。我们更详细地分析了Hebbian和反Hebbian STDP的简单软边界模型,其中考虑了非线性尖峰相互作用(三联体)。我们表明,Hebbian STDP可用于选择性增强时间上相关的突触,而反Hebbian STDP则抑制相关突触,尽管存在非线性尖峰相互作用。这种相关性检测使神经元能够对相关输入产生选择性。我们还研究了基于动力学的STDP模型的不同版本,并比较了它们对相关性变化的敏感度。我们得出结论,动力学模型通常预测软边界动态,并且这样的模型似乎非常适合检测大量输入之间的相关性。