Samuel Buck S, Hansen Elizabeth E, Manchester Jill K, Coutinho Pedro M, Henrissat Bernard, Fulton Robert, Latreille Philippe, Kim Kung, Wilson Richard K, Gordon Jeffrey I
Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10643-8. doi: 10.1073/pnas.0704189104. Epub 2007 Jun 11.
The human gut is home to trillions of microbes, thousands of bacterial phylotypes, as well as hydrogen-consuming methanogenic archaea. Studies in gnotobiotic mice indicate that Methanobrevibacter smithii, the dominant archaeon in the human gut ecosystem, affects the specificity and efficiency of bacterial digestion of dietary polysaccharides, thereby influencing host calorie harvest and adiposity. Metagenomic studies of the gut microbial communities of genetically obese mice and their lean littermates have shown that the former contain an enhanced representation of genes involved in polysaccharide degradation, possess more archaea, and exhibit a greater capacity to promote adiposity when transplanted into germ-free recipients. These findings have led to the hypothesis that M. smithii may be a therapeutic target for reducing energy harvest in obese humans. To explore this possibility, we have sequenced its 1,853,160-bp genome and compared it to other human gut-associated M. smithii strains and other Archaea. We have also examined M. smithii's transcriptome and metabolome in gnotobiotic mice that do or do not harbor Bacteroides thetaiotaomicron, a prominent saccharolytic bacterial member of our gut microbiota. Our results indicate that M. smithii is well equipped to persist in the distal intestine through (i) production of surface glycans resembling those found in the gut mucosa, (ii) regulated expression of adhesin-like proteins, (iii) consumption of a variety of fermentation products produced by saccharolytic bacteria, and (iv) effective competition for nitrogenous nutrient pools. These findings provide a framework for designing strategies to change the representation and/or properties of M. smithii in the human gut microbiota.
人类肠道是数万亿微生物、数千种细菌系统型以及消耗氢气的产甲烷古菌的家园。对无菌小鼠的研究表明,史密斯甲烷短杆菌是人类肠道生态系统中的优势古菌,它会影响细菌对膳食多糖消化的特异性和效率,从而影响宿主的热量摄取和肥胖程度。对基因肥胖小鼠及其瘦型同窝小鼠的肠道微生物群落进行的宏基因组研究表明,前者中参与多糖降解的基因比例有所增加,古菌数量更多,并且在移植到无菌受体中时表现出更强的促进肥胖的能力。这些发现引发了一种假说,即史密斯甲烷短杆菌可能是减少肥胖人群能量摄取的治疗靶点。为了探究这种可能性,我们对其1,853,160碱基对的基因组进行了测序,并将其与其他与人类肠道相关的史密斯甲烷短杆菌菌株以及其他古菌进行了比较。我们还研究了在有无肠道微生物群中一种重要的糖解细菌——多形拟杆菌的无菌小鼠中史密斯甲烷短杆菌的转录组和代谢组。我们的结果表明,史密斯甲烷短杆菌具备通过以下方式在远端肠道中生存的能力:(i)产生类似于肠道黏膜中发现的表面聚糖;(ii)调节黏附素样蛋白的表达;(iii)消耗糖解细菌产生的多种发酵产物;(iv)有效竞争含氮营养库。这些发现为设计改变人类肠道微生物群中史密斯甲烷短杆菌的比例和/或特性的策略提供了框架。