Singhal Mudita, Resat Haluk
Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
BMC Bioinformatics. 2007 Jun 13;8:199. doi: 10.1186/1471-2105-8-199.
Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.
DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.
We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.
了解特定生物体或细胞类型中存在哪些蛋白质以及这些蛋白质如何相互作用,对于在全细胞水平上理解生物过程至关重要。蛋白质-蛋白质相互作用(PPI)网络的确定一直是广泛研究的主题。尽管已经开发出相当成功的方法,但仍然存在严重的技术困难。在本文中,我们提出了DomainGA,这是一种定量计算方法,它利用结构域-结构域相互作用的信息来预测蛋白质之间的相互作用。
DomainGA是一种多参数优化方法,其中利用可用的PPI信息为结构域-结构域对推导定量评分方案。然后使用获得的结构域相互作用分数来预测一对蛋白质是否相互作用。通过酵母PPI数据和一系列测试,我们展示了DomainGA方法对参数集、分数范围和检测规则选择的稳健性和不敏感性。我们的DomainGA方法对酵母中正负PPI的解释率非常高。基于我们对人类PPI的交叉验证测试、将优化分数与从iPFAM数据库获得的结构观察到的结构域相互作用进行比较以及敏感性和特异性分析;我们得出结论,我们的DomainGA方法在跨多种生物体应用方面显示出巨大潜力。
我们设想DomainGA是构建特定生物体PPI的多层方法的第一步。由于它基于基本的结构信息,DomainGA方法可用于创建潜在的PPI,并且可以使用互补方法进一步提高构建的相互作用模板的准确性。在所报道的测试案例研究中获得的解释率清楚地表明,使用DomainGA分数构建的模板网络的错误预测率相当低,并且可以使用基于文献搜索或其他预测方法等补充方法进一步过滤错误预测。