Suppr超能文献

基于传导的微生物燃料电池生物膜阳极建模

Conduction-based modeling of the biofilm anode of a microbial fuel cell.

作者信息

Kato Marcus Andrew, Torres César I, Rittmann Bruce E

机构信息

Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, PO Box 875701, Tempe, Arizona 85287-5701, USA.

出版信息

Biotechnol Bioeng. 2007 Dec 15;98(6):1171-82. doi: 10.1002/bit.21533.

Abstract

The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.

摘要

微生物燃料电池(MFC)的生物膜经历与生物膜相关的(生长和传质)以及电化学(电子传导和电荷转移)过程。我们分三步开发了一种用于生物膜的动态一维多物种模型。首先,我们将阳极上的生物膜构建为具有以下两个特性的“生物膜阳极”:(1)生物膜具有以生物膜电导率(kappa(bio))为特征的导电固体基质。(2)生物膜基质从生物膜细菌接收电子并将电子传导至阳极。其次,我们推导了能斯特 - 莫诺德表达式来描述电子供体(ED)氧化速率。第三,我们利用质量平衡原理和欧姆定律将这些组件联系起来。然后我们求解该模型以研究生物膜中ED浓度和局部电位的双重限制。我们的模型表明,kappa(bio)强烈影响ED通量和电流通量、生物膜中的限制类型以及生物量分布。较大的kappa(bio)会增加ED通量和电流通量,因此,ED传质阻力变得显著。在生物膜阳极中可能会出现ED浓度、局部电位或两者的显著梯度,并且生物量仅在ED浓度和局部电位较高的地方进行活跃呼吸。当kappa(bio)相对较大(即≥10^(-3) mS cm^(-1))时,活性生物量可以在距离阳极数十微米的地方持续存在。生物膜厚度的增加和惰性生物量的积累会加剧双重限制并降低电流密度。随着比脱离速率和生物膜密度的增加,这些限制可以得到缓解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验