The J. Craig Venter Institute, San Diego, CA, USA.
Environ Sci Technol. 2010 Apr 1;44(7):2721-7. doi: 10.1021/es903043p.
Microbial fuel cell (MFC) technology has enabled new insights into the mechanisms of electron transfer from dissimilatory metal reducing bacteria to a solid phase electron acceptor. Using solid electrodes as electron acceptors enables quantitative real-time measurements of electron transfer rates to these surfaces. We describe here an optically accessible, dual anode, continuous flow MFC that enables real-time microscopic imaging of anode populations as they develop from single attached cells to a mature biofilms. We used this system to characterize how differences in external resistance affect cellular electron transfer rates on a per cell basis and overall biofilm development in Shewanella oneidensis strain MR-1. When a low external resistance (100 Omega) was used, estimates of current per cell reached a maximum of 204 fA/cell (1.3 x 10(6) e(-) cell(-1) sec(-1)), while when a higher (1 MOmega) resistance was used, only 75 fA/cell (0.4 x 10(6) e(-) cell(-1) sec(-1)) was produced. The 1 MOmega anode biomass consistently developed into a mature thick biofilm with tower morphology (>50 microm thick), whereas only a thin biofilm (<5 microm thick) was observed on the 100 Omega anode. These data suggest a link between the ability of a surface to accept electrons and biofilm structure development.
微生物燃料电池 (MFC) 技术使人们对异化金属还原菌向固相电子受体传递电子的机制有了新的认识。使用固体电极作为电子受体可以定量实时测量这些表面的电子传递速率。我们在这里描述了一种光学可访问的双阳极连续流动 MFC,它可以实时微观成像阳极种群,因为它们从单个附着的细胞发展为成熟的生物膜。我们使用该系统来表征外部电阻的差异如何影响基于每个细胞的细胞电子传递速率以及 Shewanella oneidensis 菌株 MR-1 的整体生物膜发育。当使用低外部电阻 (100 Ω) 时,每个细胞的电流估计值达到最大值 204 fA/细胞 (1.3 x 10(6) e(-) 细胞(-1) sec(-1)),而当使用较高的 (1 MOmega) 电阻时,每个细胞仅产生 75 fA/细胞 (0.4 x 10(6) e(-) 细胞(-1) sec(-1))。1 MOmega 阳极生物量始终形成具有塔状形态 (>50 µm 厚) 的成熟厚生物膜,而在 100 Ω 阳极上仅观察到薄生物膜 (<5 µm 厚)。这些数据表明表面接受电子的能力与生物膜结构发育之间存在联系。