Suppr超能文献

概率性气候预测与归纳问题。

Probabilistic climate forecasts and inductive problems.

作者信息

Frame D J, Faull N E, Joshi M M, Allen M R

机构信息

Oxford University Centre for the Environment, Dyson Perrins Building, South Parks Road, Oxford, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):1971-92. doi: 10.1098/rsta.2007.2069.

Abstract

The development of ensemble-based 'probabilistic' climate forecasts is often seen as a promising avenue for climate scientists. Ensemble-based methods allow scientists to produce more informative, nuanced forecasts of climate variables by reflecting uncertainty from various sources, such as similarity to observation and model uncertainty. However, these developments present challenges as well as opportunities, particularly surrounding issues of experimental design and interpretation of forecast results. This paper discusses different approaches and attempts to set out what climateprediction.net and other large ensemble, complex model experiments might contribute to this research programme.

摘要

基于集合的“概率性”气候预测的发展,通常被气候科学家视为一条充满希望的途径。基于集合的方法使科学家能够通过反映来自各种来源的不确定性(如与观测的相似性和模型不确定性),对气候变量做出更丰富、更细致入微的预测。然而,这些进展既带来了挑战,也带来了机遇,尤其是在实验设计和预测结果解释等问题方面。本文讨论了不同的方法,并试图阐述气候预测网(climateprediction.net)以及其他大型集合、复杂模型实验可能对这一研究计划做出的贡献。

相似文献

1
Probabilistic climate forecasts and inductive problems.概率性气候预测与归纳问题。
Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):1971-92. doi: 10.1098/rsta.2007.2069.
3
4
The use of the multi-model ensemble in probabilistic climate projections.多模型集合在概率性气候预测中的应用。
Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):2053-75. doi: 10.1098/rsta.2007.2076.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验