Hjelmfelt A, Weinberger E D, Ross J
Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Federal Republic of Germany.
Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):10983-7. doi: 10.1073/pnas.88.24.10983.
We propose a reversible reaction mechanism with a single stationary state in which certain concentrations assume either high or low values dependent on the concentration of a catalyst. The properties of this mechanism are those of a McCulloch-Pitts neuron. We suggest a mechanism of interneuronal connections in which the stationary state of a chemical neuron is determined by the state of other neurons in a homogeneous chemical system and is thus a "hardware" chemical implementation of neural networks. Specific connections are determined for the construction of logic gates: AND, NOR, etc. Neural networks may be constructed in which the flow of time is continuous and computations are achieved by the attainment of a stationary state of the entire chemical reaction system, or in which the flow of time is discretized by an oscillatory reaction. In another article, we will give a chemical implementation of finite state machines and stack memories, with which in principle the construction of a universal Turing machine is possible.
我们提出了一种具有单一稳态的可逆反应机制,其中某些浓度根据催化剂的浓度呈现高值或低值。该机制的特性与麦卡洛克 - 皮茨神经元的特性相同。我们提出了一种神经元间连接机制,其中化学神经元的稳态由均匀化学系统中其他神经元的状态决定,因此是神经网络的一种“硬件”化学实现。确定了用于构建逻辑门(如与门、或非门等)的特定连接。可以构建神经网络,其中时间流是连续的,并且通过达到整个化学反应系统的稳态来实现计算,或者其中时间流通过振荡反应被离散化。在另一篇文章中,我们将给出有限状态机和堆栈存储器的化学实现,原则上利用它们可以构建通用图灵机。