Suppr超能文献

一种用于三维软组织分割的、具有进化算法初始化的形状引导可变形模型。

A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation.

作者信息

Heimann Tobias, Münzing Sascha, Meinzer Hans-Peter, Wolf Ivo

机构信息

Div. Medical and Biological Informatics, German Cancer Research Center, 69120 Heidelberg, Germany.

出版信息

Inf Process Med Imaging. 2007;20:1-12. doi: 10.1007/978-3-540-73273-0_1.

Abstract

We present a novel method for the segmentation of volumetric images, which is especially suitable for highly variable soft tissue structures. Core of the algorithm is a statistical shape model (SSM) of the structure of interest. A global search with an evolutionary algorithm is employed to detect suitable initial parameters for the model, which are subsequently optimized by a local search similar to the Active Shape mechanism. After that, a deformable mesh with the same topology as the SSM is used for the final segmentation: While external forces strive to maximize the posterior probability of the mesh given the local appearance around the boundary, internal forces governed by tension and rigidity terms keep the shape similar to the underlying SSM. To prevent outliers and increase robustness, we determine the applied external forces by an algorithm for optimal surface detection with smoothness constraints. The approach is evaluated on 54 CT images of the liver and reaches an average surface distance of 1.6 +/- 0.5 mm in comparison to manual reference segmentations.

摘要

我们提出了一种用于容积图像分割的新方法,该方法特别适用于高度可变的软组织结构。该算法的核心是感兴趣结构的统计形状模型(SSM)。采用进化算法进行全局搜索以检测模型的合适初始参数,随后通过类似于主动形状机制的局部搜索对其进行优化。之后,使用与SSM具有相同拓扑结构的可变形网格进行最终分割:外力力求在给定边界周围局部外观的情况下最大化网格的后验概率,而由张力和刚度项控制的内力使形状与基础SSM相似。为了防止异常值并提高鲁棒性,我们通过一种具有平滑约束的最优表面检测算法来确定所施加的外力。该方法在54幅肝脏CT图像上进行了评估,与手动参考分割相比,平均表面距离达到1.6 +/- 0.5毫米。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验