Suppr超能文献

果蝇胚胎中合胞体有丝分裂周期的动力学建模。

Dynamical modeling of syncytial mitotic cycles in Drosophila embryos.

作者信息

Calzone Laurence, Thieffry Denis, Tyson John J, Novak Bela

机构信息

Molecular Network Dynamics Research Group of Hungarian Academy of Sciences and Budapest University of Technology and Economics, Budapest, Gellért tér, Hungary.

出版信息

Mol Syst Biol. 2007;3:131. doi: 10.1038/msb4100171. Epub 2007 Jul 31.

Abstract

Immediately following fertilization, the fruit fly embryo undergoes 13 rapid, synchronous, syncytial nuclear division cycles driven by maternal genes and proteins. During these mitotic cycles, there are barely detectable oscillations in the total level of B-type cyclins. In this paper, we propose a dynamical model for the molecular events underlying these early nuclear division cycles in Drosophila. The model distinguishes nuclear and cytoplasmic compartments of the embryo and permits exploration of a variety of rules for protein transport between the compartments. Numerical simulations reproduce the main features of wild-type mitotic cycles: patterns of protein accumulation and degradation, lengthening of later cycles, and arrest in interphase 14. The model is consistent with mutations that introduce subtle changes in the number of mitotic cycles before interphase arrest. Bifurcation analysis of the differential equations reveals the dependence of mitotic oscillations on cycle number, and how this dependence is altered by mutations. The model can be used to predict the phenotypes of novel mutations and effective ranges of the unmeasured rate constants and transport coefficients in the proposed mechanism.

摘要

受精后,果蝇胚胎立即经历由母体基因和蛋白质驱动的13个快速、同步的合胞体核分裂周期。在这些有丝分裂周期中,B型细胞周期蛋白的总量几乎没有可检测到的振荡。在本文中,我们提出了一个关于果蝇早期核分裂周期潜在分子事件的动力学模型。该模型区分了胚胎的核区室和细胞质区室,并允许探索区室间蛋白质转运的各种规则。数值模拟再现了野生型有丝分裂周期的主要特征:蛋白质积累和降解模式、后期周期的延长以及在间期14的停滞。该模型与在间期停滞前有丝分裂周期数量引入细微变化的突变一致。微分方程的分岔分析揭示了有丝分裂振荡对周期数的依赖性,以及这种依赖性如何因突变而改变。该模型可用于预测新突变的表型以及所提出机制中未测量的速率常数和转运系数的有效范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b20/1943426/baf60f675676/msb4100171-f1.jpg

相似文献

1
Dynamical modeling of syncytial mitotic cycles in Drosophila embryos.
Mol Syst Biol. 2007;3:131. doi: 10.1038/msb4100171. Epub 2007 Jul 31.
3
Influence of cyclin type and dose on mitotic entry and progression in the early Drosophila embryo.
J Cell Biol. 2009 Mar 9;184(5):639-46. doi: 10.1083/jcb.200810012.
5
Polycomb group mutants exhibit mitotic defects in syncytial cell cycles of Drosophila embryos.
Dev Biol. 2006 Feb 15;290(2):312-22. doi: 10.1016/j.ydbio.2005.11.015. Epub 2006 Jan 4.
6
Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster.
DNA Repair (Amst). 2009 Feb 1;8(2):232-41. doi: 10.1016/j.dnarep.2008.10.007. Epub 2008 Nov 29.
7
Microcephalin coordinates mitosis in the syncytial Drosophila embryo.
J Cell Sci. 2007 Oct 15;120(Pt 20):3578-88. doi: 10.1242/jcs.014290. Epub 2007 Sep 25.
8
A computational model of nuclear self-organisation in syncytial embryos.
J Theor Biol. 2014 Oct 21;359:92-100. doi: 10.1016/j.jtbi.2014.06.001. Epub 2014 Jun 12.
9
Temporal patterns of gene expression of G1-S cyclins and cdks during the first and second mitotic cell cycles in mouse embryos.
Mol Reprod Dev. 1996 Nov;45(3):264-75. doi: 10.1002/(SICI)1098-2795(199611)45:3<264::AID-MRD2>3.0.CO;2-Q.
10
Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo.
PLoS One. 2015 Feb 17;10(2):e0117859. doi: 10.1371/journal.pone.0117859. eCollection 2015.

引用本文的文献

1
Modeling the role for nuclear import dynamics in the early embryonic cell cycle.
Biophys J. 2021 Oct 5;120(19):4277-4286. doi: 10.1016/j.bpj.2021.05.005. Epub 2021 May 20.
2
Tellurium notebooks-An environment for reproducible dynamical modeling in systems biology.
PLoS Comput Biol. 2018 Jun 15;14(6):e1006220. doi: 10.1371/journal.pcbi.1006220. eCollection 2018 Jun.
3
Quick tips for creating effective and impactful biological pathways using the Systems Biology Graphical Notation.
PLoS Comput Biol. 2018 Feb 15;14(2):e1005740. doi: 10.1371/journal.pcbi.1005740. eCollection 2018 Feb.
4
From START to FINISH: computational analysis of cell cycle control in budding yeast.
NPJ Syst Biol Appl. 2015 Dec 10;1:15016. doi: 10.1038/npjsba.2015.16. eCollection 2015.
5
A fully featured COMBINE archive of a simulation study on syncytial mitotic cycles in embryos.
F1000Res. 2016 Sep 29;5:2421. doi: 10.12688/f1000research.9379.1. eCollection 2016.
6
Qualitative Dynamical Modelling Can Formally Explain Mesoderm Specification and Predict Novel Developmental Phenotypes.
PLoS Comput Biol. 2016 Sep 6;12(9):e1005073. doi: 10.1371/journal.pcbi.1005073. eCollection 2016 Sep.
7
A data-driven, mathematical model of mammalian cell cycle regulation.
PLoS One. 2014 May 13;9(5):e97130. doi: 10.1371/journal.pone.0097130. eCollection 2014.
8
A mathematical model of mitotic exit in budding yeast: the role of Polo kinase.
PLoS One. 2012;7(2):e30810. doi: 10.1371/journal.pone.0030810. Epub 2012 Feb 23.
9
A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions.
PLoS Comput Biol. 2012 Jan;8(1):e1002329. doi: 10.1371/journal.pcbi.1002329. Epub 2012 Jan 5.
10
A hybrid model of mammalian cell cycle regulation.
PLoS Comput Biol. 2011 Feb 10;7(2):e1001077. doi: 10.1371/journal.pcbi.1001077.

本文引用的文献

1
Onset of the DNA replication checkpoint in the early Drosophila embryo.
Genetics. 2007 Feb;175(2):567-84. doi: 10.1534/genetics.106.065219. Epub 2006 Dec 6.
2
The anaphase promoting complex/cyclosome: a machine designed to destroy.
Nat Rev Mol Cell Biol. 2006 Sep;7(9):644-56. doi: 10.1038/nrm1988. Epub 2006 Aug 9.
3
Analysis of a generic model of eukaryotic cell-cycle regulation.
Biophys J. 2006 Jun 15;90(12):4361-79. doi: 10.1529/biophysj.106.081240. Epub 2006 Mar 31.
4
Parameter estimation for a mathematical model of the cell cycle in frog eggs.
J Comput Biol. 2005;12(1):48-63. doi: 10.1089/cmb.2005.12.48.
5
Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis.
Curr Biol. 2004 Dec 14;14(23):2143-8. doi: 10.1016/j.cub.2004.11.050.
6
Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.
Genetics. 2004 Aug;167(4):1721-37. doi: 10.1534/genetics.104.027334.
7
Both cyclin B levels and DNA-replication checkpoint control the early embryonic mitoses in Drosophila.
Development. 2004 Jan;131(2):401-11. doi: 10.1242/dev.00944. Epub 2003 Dec 17.
8
Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module.
J Theor Biol. 2003 Oct 21;224(4):517-37. doi: 10.1016/s0022-5193(03)00201-7.
9
The dynamics of cell cycle regulation.
Bioessays. 2002 Dec;24(12):1095-109. doi: 10.1002/bies.10191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验