Suppr超能文献

通过比较基因组学鉴定编码tRNA修饰酶的基因。

Identification of genes encoding tRNA modification enzymes by comparative genomics.

作者信息

de Crécy-Lagard Valérie

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.

出版信息

Methods Enzymol. 2007;425:153-83. doi: 10.1016/S0076-6879(07)25007-4.

Abstract

As the molecular adapters between codons and amino acids, transfer-RNAs are pivotal molecules of the genetic code. The coding properties of a tRNA molecule do not reside only in its primary sequence. Posttranscriptional nucleoside modifications, particularly in the anticodon loop, can modify cognate codon recognition, affect aminoacylation properties, or stabilize the codon-anticodon wobble base pairing to prevent ribosomal frameshifting. Despite a wealth of biophysical and structural knowledge of the tRNA modifications themselves, their pathways of biosynthesis had been until recently only partially characterized. This discrepancy was mainly due to the lack of obvious phenotypes for tRNA modification-deficient strains and to the difficulty of the biochemical assays used to detect tRNA modifications. However, the availability of hundreds of whole-genome sequences has allowed the identification of many of these missing tRNA-modification genes. This chapter reviews the methods that were used to identify these genes with a special emphasis on the comparative genomic approaches. Methods that link gene and function but do not rely on sequence homology will be detailed, with examples taken from the tRNA modification field.

摘要

作为密码子与氨基酸之间的分子衔接器,转运RNA是遗传密码的关键分子。tRNA分子的编码特性并非仅取决于其一级序列。转录后核苷修饰,尤其是反密码子环中的修饰,可改变对同源密码子的识别、影响氨酰化特性,或稳定密码子-反密码子摆动碱基对以防止核糖体移码。尽管对tRNA修饰本身已有丰富的生物物理和结构知识,但直到最近其生物合成途径仍仅得到部分表征。这种差异主要是由于缺乏tRNA修饰缺陷菌株的明显表型,以及用于检测tRNA修饰的生化分析存在困难。然而,数百个全基因组序列的可得性使得许多这些缺失tRNA修饰基因得以鉴定。本章回顾了用于鉴定这些基因的方法,特别强调了比较基因组学方法。将详细介绍那些不依赖序列同源性而将基因与功能联系起来的方法,并从tRNA修饰领域举例说明。

相似文献

1
Identification of genes encoding tRNA modification enzymes by comparative genomics.
Methods Enzymol. 2007;425:153-83. doi: 10.1016/S0076-6879(07)25007-4.
2
Molecular Coping Mechanisms: Reprogramming tRNAs To Regulate Codon-Biased Translation of Stress Response Proteins.
Acc Chem Res. 2023 Dec 5;56(23):3504-3514. doi: 10.1021/acs.accounts.3c00572. Epub 2023 Nov 22.
3
tRNA's wobble decoding of the genome: 40 years of modification.
J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15.
4
The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity.
Enzymes. 2017;41:1-50. doi: 10.1016/bs.enz.2017.03.005. Epub 2017 Apr 22.
5
Decoding the genome: a modified view.
Nucleic Acids Res. 2004 Jan 9;32(1):223-38. doi: 10.1093/nar/gkh185. Print 2004.
6
Celebrating wobble decoding: Half a century and still much is new.
RNA Biol. 2018;15(4-5):537-553. doi: 10.1080/15476286.2017.1356562. Epub 2017 Sep 21.
7
Wobbling Forth and Drifting Back: The Evolutionary History and Impact of Bacterial tRNA Modifications.
Mol Biol Evol. 2018 Aug 1;35(8):2046-2059. doi: 10.1093/molbev/msy110.
9
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00690-18. Print 2019 May 1.
10
Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt B):105-113. doi: 10.1016/j.semcdb.2023.06.003. Epub 2023 Jun 28.

引用本文的文献

1
Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification.
Nucleic Acids Res. 2023 Feb 28;51(4):1971-1983. doi: 10.1093/nar/gkad048.
2
infection causes dynamic alterations in tRNA modifications and their associated gene candidates in black pepper.
Comput Struct Biotechnol J. 2022 Nov 4;20:6055-6066. doi: 10.1016/j.csbj.2022.11.002. eCollection 2022.
3
The Minimal Translation Machinery: What We Can Learn From Naturally and Experimentally Reduced Genomes.
Front Microbiol. 2022 Apr 11;13:858983. doi: 10.3389/fmicb.2022.858983. eCollection 2022.
4
Binding synergy as an essential step for tRNA editing and modification enzyme codependence in .
RNA. 2018 Jan;24(1):56-66. doi: 10.1261/rna.062893.117. Epub 2017 Oct 17.
5
The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces.
Front Immunol. 2017 Jul 28;8:838. doi: 10.3389/fimmu.2017.00838. eCollection 2017.
6
Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family.
ACS Chem Biol. 2014 Aug 15;9(8):1812-25. doi: 10.1021/cb500278k. Epub 2014 Jun 17.
7
Decoding properties of tRNA leave a detectable signal in codon usage bias.
Bioinformatics. 2012 Sep 15;28(18):i340-i348. doi: 10.1093/bioinformatics/bts403.
8
Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside.
J Biol Chem. 2012 Apr 20;287(17):13666-73. doi: 10.1074/jbc.M112.344028. Epub 2012 Feb 29.
9
Complex biotransformations catalyzed by radical S-adenosylmethionine enzymes.
J Biol Chem. 2011 Sep 2;286(35):30245-30252. doi: 10.1074/jbc.R111.272690. Epub 2011 Jul 19.
10
Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.
BMC Plant Biol. 2010 Sep 14;10:201. doi: 10.1186/1471-2229-10-201.

本文引用的文献

1
A subsystems-based approach to the identification of drug targets in bacterial pathogens.
Prog Drug Res. 2007;64:131, 133-70. doi: 10.1007/978-3-7643-7567-6_6.
2
Biosynthesis of selenocysteine on its tRNA in eukaryotes.
PLoS Biol. 2007 Jan;5(1):e4. doi: 10.1371/journal.pbio.0050004.
3
PROPHECY--a yeast phenome database, update 2006.
Nucleic Acids Res. 2007 Jan;35(Database issue):D463-7. doi: 10.1093/nar/gkl1029. Epub 2006 Dec 5.
4
The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation.
Nucleic Acids Res. 2007 Jan;35(Database issue):D347-53. doi: 10.1093/nar/gkl947. Epub 2006 Dec 1.
5
Expanded protein information at SGD: new pages and proteome browser.
Nucleic Acids Res. 2007 Jan;35(Database issue):D468-71. doi: 10.1093/nar/gkl931. Epub 2006 Nov 16.
6
MBGD: a platform for microbial comparative genomics based on the automated construction of orthologous groups.
Nucleic Acids Res. 2007 Jan;35(Database issue):D343-6. doi: 10.1093/nar/gkl978. Epub 2006 Nov 29.
8
STRING 7--recent developments in the integration and prediction of protein interactions.
Nucleic Acids Res. 2007 Jan;35(Database issue):D358-62. doi: 10.1093/nar/gkl825. Epub 2006 Nov 10.
9
Biosynthesis of phosphoserine in the Methanococcales.
J Bacteriol. 2007 Jan;189(2):575-82. doi: 10.1128/JB.01269-06. Epub 2006 Oct 27.
10
Discovery of a new prokaryotic type I GTP cyclohydrolase family.
J Biol Chem. 2006 Dec 8;281(49):37586-93. doi: 10.1074/jbc.M607114200. Epub 2006 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验