Suppr超能文献

通过分子建模和功能分析鉴定Kir6.2上的PIP2结合位点。

Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis.

作者信息

Haider Shozeb, Tarasov Andrei I, Craig Tim J, Sansom Mark S P, Ashcroft Frances M

机构信息

Department of Biochemistry, University of Oxford, Oxford, UK.

出版信息

EMBO J. 2007 Aug 22;26(16):3749-59. doi: 10.1038/sj.emboj.7601809. Epub 2007 Aug 2.

Abstract

ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.

摘要

ATP敏感性钾(K(ATP))通道通过调节钾离子跨质膜的通量,将细胞代谢与电活动联系起来。ATP与形成孔道的亚基(Kir6.2)结合,促进通道关闭。相反,磷脂酰肌醇二磷酸(PIP(2))与Kir6.2结合,增强通道开放,并减少ATP对通道的抑制作用。在此,我们利用同源建模和配体对接来确定Kir6.2上的PIP(2)结合位点。该模型与大量功能数据一致,并通过诱变进一步验证。PIP(2)的脂肪酰基尾部位于膜内,头部基团向下延伸,与Kir6.2的N端(K39、N41、R54)、跨膜结构域(K67)和C端(R176、R177、E179、R301)中的残基相互作用。我们的模型揭示了PIP(2)如何增加通道开放、减少ATP结合及通道抑制。由于所确定的残基具有保守性且影响其他Kir通道家族成员的PIP(2)敏感性,该模型可能适用于其他Kir通道的PIP(2)结合位点。

相似文献

1
Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis.
EMBO J. 2007 Aug 22;26(16):3749-59. doi: 10.1038/sj.emboj.7601809. Epub 2007 Aug 2.
2
Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit.
EMBO J. 2005 Jan 26;24(2):229-39. doi: 10.1038/sj.emboj.7600487. Epub 2005 Jan 13.
4
Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2).
J Mol Cell Cardiol. 2005 Jul;39(1):71-7. doi: 10.1016/j.yjmcc.2004.11.018.
5
N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
J Gen Physiol. 2011 Mar;137(3):299-314. doi: 10.1085/jgp.201010557. Epub 2011 Feb 14.
7
ATP-sensitive K+ channels: regulation of bursting by the sulphonylurea receptor, PIP2 and regions of Kir6.2.
J Physiol. 2006 Mar 1;571(Pt 2):303-17. doi: 10.1113/jphysiol.2005.100719. Epub 2005 Dec 22.
8
Nucleotides and phospholipids compete for binding to the C terminus of KATP channels.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2726-31. doi: 10.1073/pnas.042688899.

引用本文的文献

5
The dynamic interplay of PIP and ATP in the regulation of the K channel.
J Physiol. 2022 Oct;600(20):4503-4519. doi: 10.1113/JP283345. Epub 2022 Sep 23.
6
In silico investigation of Alsin RLD conformational dynamics and phosphoinositides binding mechanism.
PLoS One. 2022 Jul 18;17(7):e0270955. doi: 10.1371/journal.pone.0270955. eCollection 2022.
7
Structural insights into the mechanism of pancreatic K channel regulation by nucleotides.
Nat Commun. 2022 May 19;13(1):2770. doi: 10.1038/s41467-022-30430-4.
8
Striking a balance: PIP and PIP signaling in neuronal health and disease.
Explor Neuroprotective Ther. 2021;1:86-100. doi: 10.37349/ent.2021.00008. Epub 2021 Oct 29.
10
Simulating PIP-Induced Gating Transitions in Kir6.2 Channels.
Front Mol Biosci. 2021 Aug 10;8:711975. doi: 10.3389/fmolb.2021.711975. eCollection 2021.

本文引用的文献

1
Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study.
Biochemistry. 2007 Mar 27;46(12):3643-52. doi: 10.1021/bi062210f. Epub 2007 Feb 28.
2
Modeling, docking, and simulation of the major facilitator superfamily.
Biophys J. 2006 Nov 15;91(10):L84-6. doi: 10.1529/biophysj.106.093971. Epub 2006 Sep 15.
3
From molecule to malady.
Nature. 2006 Mar 23;440(7083):440-7. doi: 10.1038/nature04707.
6
Molecular simulations and lipid-protein interactions: potassium channels and other membrane proteins.
Biochem Soc Trans. 2005 Nov;33(Pt 5):916-20. doi: 10.1042/BST20050916.
8
Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate.
J Biol Chem. 2005 Oct 28;280(43):35785-8. doi: 10.1074/jbc.C500355200. Epub 2005 Sep 6.
9
Membrane protein structure quality in molecular dynamics simulation.
J Mol Graph Model. 2005 Oct;24(2):157-65. doi: 10.1016/j.jmgm.2005.05.006.
10
ATP-sensitive potassium channelopathies: focus on insulin secretion.
J Clin Invest. 2005 Aug;115(8):2047-58. doi: 10.1172/JCI25495.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验